

Table	of	Contents
1.	 Introduction

1.	 A	Brief	History	of	Revision	Control
2.	 The	Birth	of	Git
3.	 Installation
4.	 Get	Ready!

2.	 The	Basics
1.	 Create	the	Example	Site
2.	 Initialize	the	Git	Repository
3.	 View	the	Repository	Status
4.	 Stage	a	Snapshot
5.	 Commit	the	Snapshot
6.	 View	the	Repository	History
7.	 Configure	Git
8.	 Create	New	HTML	Files
9.	 Stage	the	New	Files
10.	 Commit	the	New	Files
11.	 Modify	the	HTML	Pages
12.	 Stage	and	Commit	the	Snapshot
13.	 Explore	the	Repository
14.	 Conclusion
15.	 Quick	Reference

3.	 Undoing	Changes
1.	 Display	Commit	Checksums
2.	 View	an	Old	Revision
3.	 View	an	Older	Revision
4.	 Return	to	Current	Version
5.	 Tag	a	Release
6.	 Try	a	Crazy	Experiment
7.	 Stage	and	Commit	the	Snapshot
8.	 View	the	Stable	Commit

9.	 Undo	Committed	Changes
10.	 Start	a	Smaller	Experiment
11.	 Undo	Uncommitted	Changes
12.	 Conclusion
13.	 Quick	Reference

4.	 Branches	I
1.	 View	Existing	Branches
2.	 Checkout	the	Crazy	Experiment
3.	 Create	a	New	Branch
4.	 Make	a	Rainbow
5.	 Stage	and	Commit	the	Rainbow
6.	 Rename	the	Rainbow
7.	 Return	to	the	Master	Branch
8.	 Create	a	CSS	Branch
9.	 Add	a	CSS	Stylesheet
10.	 Link	the	Stylesheet
11.	 Return	to	the	Master	Branch	(Again)
12.	 Merge	the	CSS	Branch
13.	 Delete	the	CSS	Branch
14.	 Conclusion
15.	 Quick	Reference

5.	 Branches	II
1.	 Continue	the	Crazy	Experiment
2.	 Merge	the	CSS	Updates
3.	 Style	the	Rainbow	Page
4.	 Link	to	the	Rainbow	Page
5.	 Fork	an	Alternative	Rainbow
6.	 Change	the	Rainbow
7.	 Emergency	Update!
8.	 Publish	the	News	Hotfix
9.	 Complete	the	Crazy	Experiment
10.	 Publish	the	Crazy	Experiment
11.	 Resolve	the	Merge	Conflicts

12.	 Cleanup	the	Feature	Branches
13.	 Conclusion
14.	 Quick	Reference

6.	 Rebasing
1.	 Create	an	About	Section
2.	 Add	an	About	Page
3.	 Another	Emergency	Update!
4.	 Publish	News	Hotfix
5.	 Rebase	the	About	Branch
6.	 Add	a	Personal	Bio
7.	 Add	Dummy	Page	for	Mary
8.	 Link	to	the	About	Section
9.	 Clean	Up	the	Commit	History
10.	 Stop	to	Amend	a	Commit
11.	 Continue	the	Interactive	Rebase
12.	 Publish	the	About	Section
13.	 Conclusion
14.	 Quick	Reference

7.	 Rewriting	History
1.	 Create	the	Red	Page
2.	 Create	the	Yellow	Page
3.	 Link	and	Commit	the	New	Pages
4.	 Create	and	Commit	the	Green	Page
5.	 Begin	an	Interactive	Rebase
6.	 Undo	the	Generic	Commit
7.	 Split	the	Generic	Commit
8.	 Remove	the	Last	Commit
9.	 Open	the	Reflog
10.	 Revive	the	Lost	Commit
11.	 Filter	the	Log	History
12.	 Merge	in	the	Revived	Branch
13.	 Conclusion
14.	 Quick	Reference

8.	 Remotes
1.	 Clone	the	Repository	(Mary)
2.	 Configure	The	Repository	(Mary)
3.	 Start	Mary’s	Day	(Mary)
4.	 Create	Mary’s	Bio	Page	(Mary)
5.	 Publish	the	Bio	Page	(Mary)
6.	 View	Remote	Repositories	(Mary)
7.	 Return	to	Your	Repository	(You)
8.	 Add	Mary	as	a	Remote	(You)
9.	 Fetch	Mary’s	Branches	(You)
10.	 Check	Out	a	Remote	Branch
11.	 Find	Mary’s	Changes
12.	 Merge	Mary’s	Changes
13.	 Push	a	Dummy	Branch
14.	 Push	a	New	Tag
15.	 Conclusion
16.	 Quick	Reference

9.	 Centralized	Workflows
1.	 Create	a	Bare	Repository	(Central)
2.	 Update	Remotes	(Mary	and	You)
3.	 Push	the	Master	Branch	(You)
4.	 Add	News	Update	(You)
5.	 Publish	the	News	Item	(You)
6.	 Update	CSS	Styles	(Mary)
7.	 Update	Another	CSS	Style	(Mary)
8.	 Clean	Up	Before	Publishing	(Mary)
9.	 Publish	CSS	Changes	(Mary)
10.	 Pull	in	Changes	(Mary)
11.	 Pull	in	Changes	(You)
12.	 Conclusion
13.	 Quick	Reference

10.	 Distributed	Workflows
1.	 Create	a	Bitbucket	Account

2.	 Create	a	Public	Repository	(You)
3.	 Push	to	the	Public	Repository	(You)
4.	 Browse	the	Public	Repository	(You)
5.	 Clone	the	Repository	(John)
6.	 Add	the	Pink	Page	(John)
7.	 Publish	the	Pink	Page	(John)
8.	 View	John’s	Contributions	(You)
9.	 Integrate	John’s	Contributions	(You)
10.	 Publish	John’s	Contributions	(You)
11.	 Update	Mary’s	Repository	(Mary)
12.	 Update	John’s	Repository	(John)
13.	 Conclusion

11.	 Patch	Workflows
1.	 Change	the	Pink	Page	(Mary)
2.	 Create	a	Patch	(Mary)
3.	 Add	a	Pink	Block	(Mary)
4.	 Create	Patch	of	Entire	Branch	(Mary)
5.	 Mail	the	Patches	(Mary)
6.	 Apply	the	Patches	(You)
7.	 Integrate	the	Patches	(You)
8.	 Update	Mary’s	Repository	(Mary)
9.	 Conclusion
10.	 Quick	Reference

12.	 Tips	&	Tricks
1.	 Archive	The	Repository
2.	 Bundle	the	Repository
3.	 Ignore	a	File
4.	 Stash	Uncommitted	Changes
5.	 Hook	into	Git’s	Internals
6.	 View	Diffs	Between	Commits
7.	 Reset	and	Checkout	Files
8.	 Aliases	and	Other	Configurations
9.	 Conclusion

10.	 Quick	Reference

13.	 Plumbing
1.	 Examine	Commit	Details
2.	 Examine	a	Tree
3.	 Examine	a	Blob
4.	 Examine	a	Tag
5.	 Inspect	Git’s	Branch	Representation
6.	 Explore	the	Object	Database
7.	 Collect	the	Garbage
8.	 Add	Files	to	the	Index
9.	 Store	the	Index	in	the	Database
10.	 Create	a	Commit	Object
11.	 Update	HEAD
12.	 Conclusion
13.	 Quick	Reference

Guide
1.	 Table	of	Contents
2.	 Start	of	Content

Introduction
Git	is	a	version	control	system	(VCS)	created	for	a	single	task:	managing
changes	to	your	files.	It	lets	you	track	every	change	a	software	project	goes
through,	as	well	as	where	those	changes	came	from.	This	makes	Git	an	essential
tool	for	managing	large	projects,	but	it	can	also	open	up	a	vast	array	of
possibilities	for	your	personal	workflow.

A	Brief	History	of	Revision	Control
We’ll	talk	more	about	the	core	philosophy	behind	Git	in	a	moment,	but	first,
let’s	step	through	the	evolution	of	version	control	systems	in	general.

Files	and	Folders
Before	the	advent	of	revision	control	software,	there	were	only	files	and	folders.
The	only	way	to	track	revisions	of	a	project	was	to	copy	the	entire	project	and
give	it	a	new	name.	Just	think	about	how	many	times	you’ve	saved	a	“backup”
called	my-term-paper-2.doc.	This	is	the	simplest	form	of	version	control.

Revision	control	with	files	and	folders

But,	it’s	easy	to	see	how	copying	files	from	folder	to	folder	could	prove
disastrous	for	software	developers.	What	happens	if	you	mis-label	a	folder?	Or	if

disastrous	for	software	developers.	What	happens	if	you	mis-label	a	folder?	Or	if
you	overwrite	the	wrong	file?	How	would	you	even	know	that	you	lost	an
important	piece	of	code?	It	didn’t	take	long	for	software	developers	to	realize
they	needed	something	more	reliable.

Local	VCS
So,	developers	began	writing	utility	programs	dedicated	to	managing	file
revisions.	Instead	of	keeping	old	versions	as	independent	files,	these	new	VCSs
stored	them	in	a	database.	When	you	needed	to	look	at	an	old	version,	you	used
the	VCS	instead	of	accessing	the	file	directly.	That	way,	you	would	only	have	a
single	“checked	out”	copy	of	the	project	at	any	given	time,	eliminating	the
possibility	of	mixing	up	or	losing	revisions.

Local	version	control

At	this	point,	versioning	only	took	place	on	the	developer’s	local	computer—
there	was	no	way	to	efficiently	share	code	amongst	several	programmers.

Centralized	VCS
Enter	the	centralized	version	control	system	(CVCS).	Instead	of	storing	project
history	on	the	developer’s	hard	disk,	these	new	CVCS	programs	stored
everything	on	a	server.	Developers	checked	out	files	and	saved	them	back	into
the	project	over	a	network.	This	setup	let	several	programmers	collaborate	on	a
project	by	giving	them	a	single	point	of	entry.

Centralized	version	control

While	a	big	improvement	on	local	VCS,	centralized	systems	presented	a	new	set
of	problems:	how	do	multiple	users	work	on	the	same	files	at	the	same	time?
Just	imagine	a	scenario	where	two	people	fix	the	same	bug	and	try	to	commit
their	updates	to	the	central	server.	Whose	changes	should	be	accepted?

CVCSs	addressed	this	issue	by	preventing	users	from	overriding	others’	work.	If
two	changes	conflicted,	someone	had	to	manually	go	in	and	merge	the
differences.	This	solution	worked	for	projects	with	relatively	few	updates	(which
meant	relatively	few	conflicts),	but	proved	cumbersome	for	projects	with	dozens
of	active	contributors	submitting	several	updates	everyday:	development
couldn’t	continue	until	all	merge	conflicts	were	resolved	and	made	available	to
the	entire	development	team.

Distributed	VCS
The	next	generation	of	revision	control	programs	shifted	away	from	the	idea	of	a
single	centralized	repository,	opting	instead	to	give	every	developer	their	own
local	copy	of	the	entire	project.	The	resulting	distributed	network	of	repositories

let	each	developer	work	in	isolation,	much	like	a	local	VCS—but	now	the
conflict	resolution	problem	of	CVCS	had	a	much	more	elegant	solution.

Distributed	version	control

Since	there	was	no	longer	a	central	repository,	everyone	could	develop	at	their
own	pace,	store	the	updates	locally,	and	put	off	merging	conflicts	until	their
convenience.	In	addition,	distributed	version	control	systems	(DVCS)	focused
on	efficient	management	for	separate	branches	of	development,	which	made	it
much	easier	to	share	code,	merge	conflicts,	and	experiment	with	new	ideas.

The	local	nature	of	DVCSs	also	made	development	much	faster,	since	you	no
longer	had	to	perform	actions	over	a	network.	And,	since	each	user	had	a
complete	copy	of	the	project,	the	risk	of	a	server	crash,	a	corrupted	repository,	or
any	other	type	of	data	loss	was	much	lower	than	that	of	their	CVCS
predecessors.

The	Birth	of	Git
And	so,	we	arrive	at	Git,	a	distributed	version	control	system	created	to	manage
the	Linux	kernel.	In	2005,	the	Linux	community	lost	their	free	license	to	the
BitKeeper	software,	a	commercial	DVCS	that	they	had	been	using	since	2002.	In

BitKeeper	software,	a	commercial	DVCS	that	they	had	been	using	since	2002.	In
response,	Linus	Torvalds	advocated	the	development	of	a	new	open-source
DVCS	as	a	replacement.	This	was	the	birth	of	Git.

As	a	source	code	manager	for	the	entire	Linux	kernel,	Git	had	several	unique
constraints,	including:

Reliability
Efficient	management	of	large	projects
Support	for	distributed	development
Support	for	non-linear	development

While	other	DVCSs	did	exist	at	the	time	(e.g.,	GNU’s	Arch	or	David	Roundy’s
Darcs),	none	of	them	could	satisfy	this	combination	of	features.	Driven	by	these
goals,	Git	has	been	under	active	development	for	several	years	and	now	enjoys	a
great	deal	of	stability,	popularity,	and	community	involvement.

Git	originated	as	a	command-line	program,	but	a	variety	of	visual	interfaces
have	been	released	over	the	years.	Graphical	tools	mask	some	of	the	complexity
behind	Git	and	often	make	it	easier	to	visualize	the	state	of	a	repository,	but	they
still	require	a	solid	foundation	in	distributed	version	control.	With	this	in	mind,
we’ll	be	sticking	to	the	command-line	interface,	which	is	still	the	most	common
way	to	interact	with	Git.

Installation
The	upcoming	modules	will	explore	Git’s	features	by	applying	commands	to
real-world	scenarios.	But	first,	you’ll	need	a	working	Git	installation	to
experiment	with.	Downloads	for	all	supported	platforms	are	available	via	the
official	Git	website.

For	Windows	users,	this	will	install	a	special	command	shell	called	Git	Bash.
You	should	be	using	this	shell	instead	of	the	native	command	prompt	to	run	Git
commands.	OS	X	and	Linux	users	can	access	Git	from	a	normal	shell.	To	test
your	installation,	open	a	new	command	prompt	and	run	git	--version.	It
should	output	something	like	git	version	1.7.10.2	(Apple	Git-33).

http://git-scm.com

Get	Ready!
Remember	that	Ry’s	Git	Tutorial	is	designed	to	demonstrate	Git’s	feature	set,
not	just	give	you	a	superficial	overview	of	the	most	common	commands.	To	get
the	most	out	of	this	tutorial,	it’s	important	to	actually	execute	the	commands
you’re	reading	about.	So,	make	sure	you’re	sitting	in	front	of	a	computer,	and
let’s	get	to	it!

The	Basics
Now	that	you	have	a	basic	understanding	of	version	control	systems	in	general,
we	can	start	experimenting	with	Git.	Using	Git	as	a	VCS	is	a	lot	like	working
with	a	normal	software	project.	You’re	still	writing	code	in	files	and	storing
those	files	in	folders,	only	now	you	have	access	to	a	plethora	of	Git	commands
to	manipulate	those	files.

For	example,	if	you	want	to	revert	to	a	previous	version	of	your	project,	all	you
have	to	do	is	run	a	simple	Git	command.	This	command	will	dive	into	Git’s
internal	database,	figure	out	what	your	project	looked	like	at	the	desired	state,
and	update	all	the	existing	files	in	your	project	folder	(also	known	as	the
working	directory).	From	an	external	standpoint,	it	will	look	like	your	project
magically	went	back	in	time.

This	module	explores	the	fundamental	Git	workflow:	creating	a	repository,
staging	and	committing	snapshots,	configuring	options,	and	viewing	the	state	of
a	repository.	It	also	introduces	the	HTML	website	that	serves	as	the	running
example	for	this	entire	tutorial.	A	very	basic	knowledge	of	HTML	and	CSS	will
give	you	a	deeper	understanding	of	the	purpose	underlying	various	Git
commands	but	is	not	strictly	required.

Create	the	Example	Site
Before	we	can	execute	any	Git	commands,	we	need	to	create	the	example
project.	Create	a	new	folder	called	my-git-repo	to	store	the	project,	then	add	a
file	called	index.html	to	it.	Open	index.html	in	your	favorite	text	editor	and
add	the	following	HTML.

<!DOCTYPE	html>

<html	lang="en">

<head>

		<title>A	Colorful	Website</title>

		<meta	charset="utf-8"	/>

</head>

<body>

		<h1	style="color:	#07F">A	Colorful	Website</h1>

		<p>This	is	a	website	about	color!</p>				

		

		<h2	style="color:	#C00">News</h2>

		

				Nothing	going	on	(yet)

		

</body>

</html>

Save	the	file	when	you’re	done.	This	serves	as	the	foundation	of	our	example
project.	Feel	free	to	open	the	index.html	in	a	web	browser	to	see	what	kind	of
website	it	translates	to.	It’s	not	exactly	pretty,	but	it	serves	our	purposes.

Initialize	the	Git	Repository
Now,	we’re	ready	to	create	our	first	Git	repository.	Open	a	command	prompt	(or
Git	Bash	for	Windows	users)	and	navigate	to	the	project	directory	by	executing:

cd	pathto/my-git-repo

where	pathto/my-git-repo	is	a	path	to	the	folder	created	in	the	previous	step.
For	example,	if	you	created	my-git-repo	on	your	desktop,	you	would	execute:

cd	~/Desktop/my-git-repo

Next,	run	the	following	command	to	turn	the	directory	into	a	Git	repository.

git	init

This	initializes	the	repository,	which	enables	the	rest	of	Git’s	powerful	features.

Notice	that	there	is	now	a	.git	directory	in	my-git-repo	that	stores	all	the
tracking	data	for	our	repository	(you	may	need	to	enable	hidden	files	to	view	this
folder).	The	.git	folder	is	the	only	difference	between	a	Git	repository	and	an
ordinary	folder,	so	deleting	it	will	turn	your	project	back	into	an	unversioned
collection	of	files.

View	the	Repository	Status
Before	we	try	to	start	creating	revisions,	it	would	be	helpful	to	view	the	status	of
our	new	repository.	Execute	the	following	in	your	command	prompt.

git	status

This	should	output	something	like:

#	On	branch	master

#

#	Initial	commit

#

#	Untracked	files:

#			(use	"git	add	<file>..."	to	include	in	what	will	be	committed)

#

#							index.html

nothing	added	to	commit	but	untracked	files	present	(use	"git	add"	to	track)

Ignoring	the	On	branch	master	portion	for	the	time	being,	this	status	message
tells	us	that	we’re	on	our	initial	commit	and	that	we	have	nothing	to	commit	but
“untracked	files.”

An	untracked	file	is	one	that	is	not	under	version	control.	Git	doesn’t
automatically	track	files	because	there	are	often	project	files	that	we	don’t	want
to	keep	under	revision	control.	These	include	binaries	created	by	a	C	program,
compiled	Python	modules	(.pyc	files),	and	any	other	content	that	would
unnecessarily	bloat	the	repository.	To	keep	a	project	small	and	efficient,	you

should	only	track	source	files	and	omit	anything	that	can	be	generated	from
those	files.	This	latter	content	is	part	of	the	build	process—not	revision	control.

Stage	a	Snapshot
So,	we	need	to	explicitly	tell	Git	to	add	index.html	to	the	repository.	The	aptly
named	git	add	command	tells	Git	to	start	tracking	index.html:

git	add	index.html

git	status

In	place	of	the	“Untracked	files”	list,	you	should	see	the	following	status.

#	Changes	to	be	committed:

#			(use	"git	rm	--cached	<file>..."	to	unstage)

#

#							new	file:			index.html

We’ve	just	added	index.html	to	the	snapshot	for	the	next	commit.	A	snapshot
represents	the	state	of	your	project	at	a	given	point	in	time.	In	this	case,	we
created	a	snapshot	with	one	file:	index.html.	If	we	ever	told	Git	to	revert	to	this
snapshot,	it	would	replace	the	entire	project	folder	with	this	one	file,	containing
the	exact	same	HTML	as	it	does	right	now.

Git’s	term	for	creating	a	snapshot	is	called	staging	because	we	can	add	or
remove	multiple	files	before	actually	committing	it	to	the	project	history.
Staging	gives	us	the	opportunity	to	group	related	changes	into	distinct	snapshots
—a	practice	that	makes	it	possible	to	track	the	meaningful	progression	of	a
software	project	(instead	of	just	arbitrary	lines	of	code).

Commit	the	Snapshot
We	have	staged	a	snapshot,	but	we	still	need	to	commit	it	to	the	project	history.
The	next	command	will	open	a	text	editor	and	prompt	you	to	enter	a	message	for

the	commit.

git	commit

Type	Create	index	page	for	the	message,	leave	the	remaining	text,	save	the
file,	and	exit	the	editor.	You	should	see	the	message	1	files	changed	among	a
mess	of	rather	ambiguous	output.	This	changed	file	is	our	index.html.

As	we	just	demonstrated,	saving	a	version	of	your	project	is	a	two	step	process:

1.	 Staging.	Telling	Git	what	files	to	include	in	the	next	commit.
2.	 Committing.	Recording	the	staged	snapshot	with	a	descriptive	message.

Staging	files	with	the	git	add	command	doesn’t	actually	affect	the	repository	in
any	significant	way—it	just	lets	us	get	our	files	in	order	for	the	next	commit.
Only	after	executing	git	commit	will	our	snapshot	be	recorded	in	the	repository.
Committed	snapshots	can	be	seen	as	“safe”	versions	of	the	project.	Git	will
never	change	them,	which	means	you	can	do	almost	anything	you	want	to	your
project	without	losing	those	“safe”	revisions.	This	is	the	principal	goal	of	any
version	control	system.

The	stage/commit	process

View	the	Repository	History
Note	that	git	status	now	tells	us	that	there	is	nothing	to	commit,	which

means	our	current	state	matches	what	is	stored	in	the	repository.	The	git
status	command	will	only	show	us	uncommitted	changes—to	view	our	project
history,	we	need	a	new	command:

git	log

When	you	execute	this	command,	Git	will	output	information	about	our	one	and
only	commit,	which	should	look	something	like	this:

commit	b650e4bd831aba05fa62d6f6d064e7ca02b5ee1b

Author:	unknown	<user@computer.(none)>

Date:			Wed	Jan	11	00:45:10	2012	-0600

				Create	index	page

Let’s	break	this	down.	First,	the	commit	is	identified	with	a	very	large,	very
random-looking	string	(b650e4b...).	This	is	an	SHA-1	checksum	of	the
commit’s	contents,	which	ensures	that	the	commit	will	never	be	corrupted
without	Git	knowing	about	it.	All	of	your	SHA-1	checksums	will	be	different
than	those	displayed	in	this	tutorial	due	to	the	different	dates	and	authors	in	your
commits.	In	the	next	module,	we’ll	see	how	a	checksum	also	serves	as	a	unique
ID	for	a	commit.

Next,	Git	displays	the	author	of	the	commit.	But	since	we	haven’t	told	Git	our
name	yet,	it	just	displays	unknown	with	a	generated	username.	Git	also	outputs
the	date,	time,	and	timezone	(-0600)	of	when	the	commit	took	place.	Finally,	we
see	the	commit	message	that	was	entered	in	the	previous	step.

Configure	Git
Before	committing	any	more	snapshots,	we	should	probably	tell	Git	who	we	are.
We	can	do	this	with	the	git	config	command:

git	config	--global	user.name	"Your	Name"

git	config	--global	user.email	your.email@example.com

Be	sure	to	replace	Your	Name	and	your.email@example.com	with	your	actual
name	and	email.	The	--global	flag	tells	Git	to	use	this	configuration	as	a	default
for	all	of	your	repositories.	Omitting	it	lets	you	specify	different	user
information	for	individual	repositories,	which	will	come	in	handy	later	on.

Create	New	HTML	Files
Let’s	continue	developing	our	website	a	bit.	Start	by	creating	a	file	called
orange.html	with	the	following	content.

<!DOCTYPE	html>

<html	lang="en">

<head>

		<title>The	Orange	Page</title>

		<meta	charset="utf-8"	/>

</head>

<body>

		<h1	style="color:	#F90">The	Orange	Page</h1>

		<p>Orange	is	so	great	it	has	a

		fruit	named	after	it.</p>

</body>

</html>

Then,	add	a	blue.html	page:

<!DOCTYPE	html>

<html	lang="en">

<head>

		<title>The	Blue	Page</title>

		<meta	charset="utf-8"	/>

</head>

<body>

		<h1	style="color:	#00F">The	Blue	Page</h1>

		<p>Blue	is	the	color	of	the	sky.</p>

</body>

</html>

Stage	the	New	Files
Next,	we	can	stage	the	files	the	same	way	we	created	the	first	snapshot.

git	add	orange.html	blue.html

git	status

Notice	that	we	can	pass	more	than	one	file	to	git	add.	After	adding	the	files,
your	status	output	should	look	like	the	following:

#	On	branch	master

#	Changes	to	be	committed:

#			(use	"git	reset	HEAD	<file>..."	to	unstage)

#

#							new	file:			blue.html

#							new	file:			orange.html

Try	running	git	log.	It	only	outputs	the	first	commit,	which	tells	us	that
blue.html	and	orange.html	have	not	yet	been	added	to	the	repository’s	history.
Remember,	we	can	see	staged	changes	with	git	status,	but	not	with	git	log.
The	latter	is	used	only	for	committed	changes.

Status	output	vs.	Log	output

Commit	the	New	Files
Let’s	commit	our	staged	snapshot:

git	commit

Use	Create	blue	and	orange	pages	as	the	commit	message,	then	save	and
close	the	file.	Now,	git	log	should	output	two	commits,	the	second	of	which
reflects	our	name/email	configuration.	This	project	history	can	be	visualized	as:

Current	project	history

Each	circle	represents	a	commit,	the	red	circle	designates	the	commit	we’re
currently	viewing,	and	the	arrow	points	to	the	preceding	commit.	This	last	part
may	seem	counterintuitive,	but	it	reflects	the	underlying	relationship	between
commits	(that	is,	a	new	commit	refers	to	its	parent	commit).	You’ll	see	this	type
of	diagram	many,	many	times	throughout	this	tutorial.

Modify	the	HTML	Pages

The	git	add	command	we’ve	been	using	to	stage	new	files	can	also	be	used	to
stage	modified	files.	Add	the	following	to	the	bottom	of	index.html,	right
before	the	closing	</body>	tag:

<h2>Navigation</h2>

		<li	style="color:	#F90">

				The	Orange	Page

		

		<li	style="color:	#00F">

				The	Blue	Page

		

Next,	add	a	home	page	link	to	the	bottom	of	orange.html	and	blue.html	(again,
before	the	</body>	line):

<p>Return	to	home	page</p>

You	can	now	navigate	between	pages	when	viewing	them	in	a	web	browser.

Stage	and	Commit	the	Snapshot
Once	again,	we’ll	stage	the	modifications,	then	commit	the	snapshot.

git	status

git	add	index.html	orange.html	blue.html

git	status

git	commit	-m	"Add	navigation	links"

The	-m	option	lets	you	specify	a	commit	message	on	the	command	line	instead
of	opening	a	text	editor.	This	is	just	a	convenient	shortcut	(it	has	the	exact	same
effect	as	our	previous	commits).

Our	history	can	now	be	represented	as	the	following.	Note	that	the	red	circle,
which	represents	the	current	commit,	automatically	moves	forward	every	time
we	commit	a	new	snapshot.

Current	project	history

Explore	the	Repository’s	History
The	git	log	command	comes	with	a	lot	of	formatting	options,	a	few	of	which
will	be	introduced	throughout	this	tutorial.	For	now,	we’ll	just	use	the
convenient	--oneline	flag:

git	log	--oneline

Condensing	output	to	a	single	line	is	a	great	way	to	get	a	high-level	overview	of
a	repository.	Another	useful	configuration	is	to	pass	a	filename	to	git	log:

git	log	--oneline	blue.html

This	displays	only	the	blue.html	history.	Notice	that	the	initial	Create	index
page	commit	is	missing,	since	blue.html	didn’t	exist	in	that	snapshot.

Conclusion
In	this	module,	we	introduced	the	fundamental	Git	workflow:	edit	files,	stage	a
snapshot,	and	commit	the	snapshot.	We	also	had	some	hands-on	experience	with
the	components	involved	in	this	process:

The	fundamental	Git	workflow

The	distinction	between	the	working	directory,	the	staged	snapshot,	and
committed	snapshots	is	at	the	very	core	of	Git	version	control.	Nearly	all	other
Git	commands	manipulate	one	of	these	components	in	some	way,	so
understanding	the	interplay	between	them	is	a	fantastic	foundation	for	mastering
Git.

The	next	module	puts	our	existing	project	history	to	work	by	reverting	to
previous	snapshots.	This	is	all	you	need	to	start	using	Git	as	a	simple	versioning
tool	for	your	own	projects.

Quick	Reference
git	init

Create	a	Git	repository	in	the	current	folder.

git	status

View	the	status	of	each	file	in	a	repository.

git	add	<file>

Stage	a	file	for	the	next	commit.

git	commit

Commit	the	staged	files	with	a	descriptive	message.

git	log

View	a	repository’s	commit	history.

View	a	repository’s	commit	history.

git	config	--global	user.name	"<name>"

Define	the	author	name	to	be	used	in	all	repositories.

git	config	--global	user.email	<email>

Define	the	author	email	to	be	used	in	all	repositories.

Undoing	Changes
In	the	last	module,	we	learned	how	to	record	versions	of	a	project	into	a	Git
repository.	The	whole	point	of	maintaining	these	“safe”	copies	is	peace	of	mind:
should	our	project	suddenly	break,	we’ll	know	that	we	have	easy	access	to	a
functional	version,	and	we’ll	be	able	to	pinpoint	precisely	where	the	problem
was	introduced.

To	this	end,	storing	“safe”	versions	isn’t	much	help	without	the	ability	to	restore
them.	Our	next	task	is	to	learn	how	to	view	the	previous	states	of	a	project,
revert	back	to	them,	and	reset	uncommitted	changes.

Download	the	repository	for	this	module

If	you’ve	been	following	along	from	the	previous	module,	you	already	have
everything	you	need.	Otherwise,	download	the	zipped	Git	repository	from	the
above	link,	uncompress	it,	and	you’re	good	to	go.

Display	Commit	Checksums
As	a	quick	review,	let’s	display	our	repository’s	history.	Navigate	a	command
prompt	(or	Git	Bash)	to	the	my-git-repo	folder	and	run	the	following.

git	log	--oneline

The	output	for	this	should	look	similar	to	the	following,	but	contain	different
commit	checksums.

1c310d2	Add	navigation	links

54650a3	Create	blue	and	orange	pages

b650e4b	Create	index	page

Git	only	outputs	the	first	7	characters	of	the	checksum	(remember	that	you	can
see	the	full	version	with	the	default	formatting	of	git	log).	These	first	few

http://rypress.com/tutorials/git/media/repo-zips/undoing-changes.zip

characters	effectively	serve	as	a	unique	ID	for	each	commit.

View	an	Old	Revision
Using	the	new	git	checkout	command,	we	can	view	the	contents	of	a	previous
snapshot.	Make	sure	to	change	54650a3	in	the	following	command	to	the	ID	of
your	second	commit.

git	checkout	54650a3

This	will	output	a	lot	of	information	about	a	detached	HEAD	state.	You	can
ignore	it	for	now.	All	you	need	to	know	is	that	the	above	command	turns	your
my-git-repo	directory	into	an	exact	replica	of	the	second	snapshot	we
committed	in	The	Basics.

Open	the	HTML	files	in	a	text	editor	or	web	browser	to	verify	that	the
navigation	links	we	added	in	the	third	commit	have	disappeared.	Running	git
log	will	also	tell	us	that	the	third	commit	is	no	longer	part	of	the	project.	After
checking	out	the	second	commit,	our	repository	history	looks	like	the	following
(the	red	circle	represents	the	current	commit).

Checking	out	the	2nd	commit

View	an	Older	Revision
Let’s	go	even	farther	back	in	our	history.	Be	sure	to	change	b650e4b	to	the	ID	of
your	first	commit.

git	checkout	b650e4b

Now,	the	blue.html	and	orange.html	files	are	gone,	as	is	the	rest	of	the	git
log	history.

Checking	out	the	1st	commit

In	the	last	module,	we	said	that	Git	was	designed	to	never	lose	a	committed
snapshot.	So,	where	did	our	second	and	third	snapshots	go?	A	simple	git
status	will	answer	that	question	for	us.	It	should	return	the	following	message:

#	Not	currently	on	any	branch.

nothing	to	commit	(working	directory	clean)

Compare	this	with	the	status	output	from	the	previous	module:

#	On	branch	master

nothing	to	commit	(working	directory	clean)

All	of	our	actions	in	The	Basics	took	place	on	the	master	branch,	which	is	where
our	second	and	third	commits	still	reside.	To	retrieve	our	complete	history,	we
just	have	to	check	out	this	branch.	This	is	a	very	brief	introduction	to	branches,
but	it’s	all	we	need	to	know	to	navigate	between	commits.	The	next	module	will
discuss	branches	in	full	detail.

Return	to	Current	Version
We	can	use	the	same	git	checkout	command	to	return	to	the	master	branch.

git	checkout	master

This	makes	Git	update	our	working	directory	to	reflect	the	state	of	the	master

branch’s	snapshot.	It	re-creates	the	blue.html	and	orange.html	files	for	us,	and
the	content	of	index.html	is	updated	as	well.	We’re	now	back	to	the	current
state	of	the	project,	and	our	history	looks	like:

Current	project	history

Tag	a	Release
Let’s	call	this	a	stable	version	of	the	example	website.	We	can	make	it	official
by	tagging	the	most	recent	commit	with	a	version	number.

git	tag	-a	v1.0	-m	"Stable	version	of	the	website"

Tags	are	convenient	references	to	official	releases	and	other	significant
milestones	in	a	software	project.	It	lets	developers	easily	browse	and	check	out
important	revisions.	For	example,	we	can	now	use	the	v1.0	tag	to	refer	to	the
third	commit	instead	of	its	random	ID.	To	view	a	list	of	existing	tags,	execute
git	tag	without	any	arguments.

In	the	above	snippet,	the	-a	flag	tells	Git	to	create	an	annotated	tag,	which	lets
us	record	our	name,	the	date,	and	a	descriptive	message	(specified	via	the	-m
flag).	We’ll	use	this	tag	to	find	the	stable	version	after	we	try	some	crazy
experiments.

Try	a	Crazy	Experiment
We’re	now	free	to	add	experimental	changes	to	the	example	site	without
affecting	any	committed	content.	Create	a	new	file	called	crazy.html	and	add
the	following	HTML.

<!DOCTYPE	html>

<html	lang="en">

<head>

		<title>A	Crazy	Experiment</title>

		<meta	charset="utf-8"	/>

</head>

<body>

		<h1>A	Crazy	Experiment</h1>

		<p>We're	trying	out	a	crazy

		experiment!

				

		<p>Return	to	home	page</p>

</body>

</html>

Stage	and	Commit	the	Snapshot
Stage	and	commit	the	new	file	as	usual.

git	add	crazy.html

git	status

git	commit	-m	"Add	a	crazzzy	experiment"

git	log

It’s	a	good	practice	to	run	git	status	to	see	exactly	what	you’re	committing
before	running	git	commit	-m.	This	will	keep	you	from	unintentionally
committing	a	file	that	doesn’t	belong	in	the	current	snapshot.

As	expected,	the	new	snapshot	shows	up	in	the	repository’s	history.	If	your	log
history	takes	up	more	than	one	screen,	you	can	scroll	down	by	pressing	Space
and	return	to	the	command	line	by	pressing	the	letter	q.

View	the	Stable	Commit

View	the	Stable	Commit
Let’s	go	back	and	take	a	look	at	our	stable	revision.	Remember	that	the	v1.0	tag
now	serves	as	a	user-friendly	shortcut	to	the	third	commit’s	ID.

git	checkout	v1.0

After	seeing	the	stable	version	of	the	site,	we	decide	to	scrap	the	crazy
experiment.	But,	before	we	undo	the	changes,	we	need	to	return	to	the	master
branch.	If	we	didn’t,	all	of	our	updates	would	be	on	some	non-existent	branch.
As	we’ll	discover	next	module,	you	should	never	make	changes	directly	to	a
previous	revision.

git	checkout	master

git	log	--oneline

At	this	point,	our	history	should	look	like	the	following:

514fbe7	Add	a	crazzzy	experiment

1c310d2	Add	navigation	links

54650a3	Create	blue	and	orange	pages

b650e4b	Create	index	page

Undo	Committed	Changes
We’re	ready	to	restore	our	stable	tag	by	removing	the	most	recent	commit.	Make
sure	to	change	514fbe7	to	the	ID	of	the	crazy	experiment’s	commit	before
running	the	next	command.

git	revert	514fbe7

This	will	prompt	you	for	a	commit	message	with	a	default	of	Revert	"Add	a
crazzzy	experiment"....	You	can	leave	the	default	message	and	close	the	file.
After	verifying	that	crazy.html	is	gone,	take	a	look	at	your	history	with	git

log	--oneline.

506bb9b	Revert	"Add	a	crazzzy	experiment"

514fbe7	Add	a	crazzzy	experiment

1c310d2	Add	navigation	links

54650a3	Create	blue	and	orange	pages

b650e4b	Create	index	page

Notice	that	instead	of	deleting	the	“crazzzy	experiment”	commit,	Git	figures	out
how	to	undo	the	changes	it	contains,	then	tacks	on	another	commit	with	the
resulting	content.	So,	our	fifth	commit	and	our	third	commit	represent	the	exact
same	snapshot,	as	shown	below.	Again,	Git	is	designed	to	never	lose	history:	the
fourth	snapshot	is	still	accessible,	just	in	case	we	want	to	continue	developing	it.

Current	project	history

When	using	git	revert,	remember	to	specify	the	commit	that	you	want	to	undo
—not	the	stable	commit	that	you	want	to	return	to.	It	helps	to	think	of	this
command	as	saying	“undo	this	commit”	rather	than	“restore	this	version.”

Start	a	Smaller	Experiment
Let’s	try	a	smaller	experiment	this	time.	Create	dummy.html	and	leave	it	as	a
blank	file.	Then,	add	a	link	in	the	“Navigation”	section	of	index.html	so	that	it
resembles	the	following.

<h2>Navigation</h2>

		<li	style="color:	#F90">

				The	Orange	Page

		

		<li	style="color:	#00F">

				The	Blue	Page

		

		

				The	Dummy	Page

		

In	the	next	section,	we’re	going	to	abandon	this	uncommitted	experiment.	But
since	the	git	revert	command	requires	a	commit	ID	to	undo,	we	can’t	use	the
method	discussed	above.

Undo	Uncommitted	Changes
Before	we	start	undoing	things,	let’s	take	a	look	at	the	status	of	our	repository.

git	status

We	have	a	tracked	file	and	an	untracked	file	that	need	to	be	changed.	First,	we’ll
take	care	of	index.html:

git	reset	--hard

This	changes	all	tracked	files	to	match	the	most	recent	commit.	Note	that	the	--
hard	flag	is	what	actually	updates	the	file.	Running	git	reset	without	any	flags
will	simply	unstage	index.html,	leaving	its	contents	as	is.	In	either	case,	git
reset	only	operates	on	the	working	directory	and	the	staging	area,	so	our	git
log	history	remains	unchanged.

Next,	let’s	remove	the	dummy.html	file.	Of	course,	we	could	manually	delete	it,

but	using	Git	to	reset	changes	eliminates	human	errors	when	working	with
several	files	in	large	teams.	Run	the	following	command.

git	clean	-f

This	will	remove	all	untracked	files.	With	dummy.html	gone,	git	status	should
now	tell	us	that	we	have	a	“clean”	working	directory,	meaning	our	project
matches	the	most	recent	commit.

Be	careful	with	git	reset	and	git	clean.	Both	operate	on	the	working
directory,	not	on	the	committed	snapshots.	Unlike	git	revert,	they
permanently	undo	changes,	so	make	sure	you	really	want	to	trash	what	you’re
working	on	before	you	use	them.

Conclusion
As	noted	in	the	previous	module,	most	Git	commands	operate	on	one	of	the
three	main	components	of	a	Git	repository:	the	working	directory,	the	staged
snapshot,	or	the	committed	snapshots.	The	git	reset	command	undoes	changes
to	the	working	directory	and	the	staged	snapshot,	while	git	revert	undoes
changes	contained	in	committed	snapshots.	Not	surprisingly,	git	status	and
git	log	directly	parallel	this	behavior.

Resetting	vs.	Reverting

I	mentioned	that	instead	of	completely	removing	a	commit,	git	revert	saves
the	commit	in	case	you	want	to	come	back	to	it	later.	This	is	only	one	reason	for
preserving	committed	snapshots.	When	we	start	working	with	remote
repositories,	we’ll	see	that	altering	the	history	by	removing	a	commit	has
dramatic	consequences	for	collaborating	with	other	developers.

This	module	also	introduces	the	concept	of	switching	between	various	commits
and	branches	with	git	checkout.	Branches	round	out	our	discussion	of	the	core
Git	components,	and	they	offer	an	elegant	option	for	optimizing	your
development	workflow.	In	the	next	module,	we’ll	cover	the	basic	Git	branch
commands.

Quick	Reference
git	checkout	<commit-id>

View	a	previous	commit.

git	tag	-a	<tag-name>	-m	"<description>"

Create	an	annotated	tag	pointing	to	the	most	recent	commit.

git	revert	<commit-id>

Undo	the	specified	commit	by	applying	a	new	commit.

git	reset	--hard

Reset	tracked	files	to	match	the	most	recent	commit.

git	clean	-f

Remove	untracked	files.

git	reset	--hard	/	git	clean	-f
Permanently	undo	uncommitted	changes.

Branches,	Part	I
Branches	are	the	final	component	of	Git	version	control.	This	gives	us	four	core
elements	to	work	with	throughout	the	rest	of	this	tutorial:

The	Working	Directory
The	Staged	Snapshot
Committed	Snapshots
Development	Branches

In	Git,	a	branch	is	an	independent	line	of	development.	For	example,	if	you
wanted	to	experiment	with	a	new	idea	without	using	Git,	you	might	copy	all	of
your	project	files	into	another	directory	and	start	making	your	changes.	If	you
liked	the	result,	you	could	copy	the	affected	files	back	into	the	original	project.
Otherwise,	you	would	simply	delete	the	entire	experiment	and	forget	about	it.

This	is	the	exact	functionality	offered	by	Git	branches—with	some	key
improvements.	First,	branches	present	an	error-proof	method	for	incorporating
changes	from	an	experiment.	Second,	they	let	you	store	all	of	your	experiments
in	a	single	directory,	which	makes	it	much	easier	to	keep	track	of	them	and	to
share	them	with	others.	Branches	also	lend	themselves	to	several	standardized
workflows	for	both	individual	and	collaborative	development,	which	will	be
explored	in	the	latter	half	of	the	tutorial.

Download	the	repository	for	this	module

If	you’ve	been	following	along	from	the	previous	module,	you	already	have
everything	you	need.	Otherwise,	download	the	zipped	Git	repository	from	the
above	link,	uncompress	it,	and	you’re	good	to	go.

View	Existing	Branches
Let’s	start	our	exploration	by	listing	the	existing	branches	for	our	project.

git	branch

http://rypress.com/tutorials/git/media/repo-zips/branches-1.zip

This	will	display	our	one	and	only	branch:	*	master.	The	master	branch	is	Git’s
default	branch,	and	the	asterisk	next	to	it	tells	us	that	it’s	currently	checked	out.
This	means	that	the	most	recent	snapshot	in	the	master	branch	resides	in	the
working	directory:

The	master	branch

Notice	that	since	there’s	only	one	working	directory	for	each	project,	only	one
branch	can	be	checked	out	at	a	time.

Checkout	the	Crazy	Experiment
The	previous	module	left	out	some	details	about	how	checking	out	previous
commits	actually	works.	We’re	now	ready	to	tackle	this	topic	in	depth.	First,	we
need	the	checksums	of	our	committed	snapshots.

git	log	--oneline

This	outputs	the	following	history.

506bb9b	Revert	"Add	a	crazzzy	experiment"

514fbe7	Add	a	crazzzy	experiment

1c310d2	Add	navigation	links

54650a3	Create	blue	and	orange	pages

b650e4b	Create	index	page

Check	out	the	crazy	experiment	from	the	last	module,	remembering	to	change
514fbe7	to	the	ID	of	your	fourth	commit.

git	checkout	514fbe7

This	command	returns	a	message	that	says	we’re	in	a	detached	HEAD	state	and
that	the	HEAD	is	now	at	514fbe7.	The	HEAD	is	Git’s	internal	way	of	indicating
the	snapshot	that	is	currently	checked	out.	This	means	the	red	circle	in	each	of
our	history	diagrams	actually	represents	Git’s	HEAD.	The	following	figure	shows
the	state	of	our	repository	before	and	after	we	checked	out	an	old	commit.

Checking	out	the	4th	commit

As	shown	in	the	“before”	diagram,	the	HEAD	normally	resides	on	the	tip	of	a
development	branch.	But	when	we	checked	out	the	previous	commit,	the	HEAD
moved	to	the	middle	of	the	branch.	We	can	no	longer	say	we’re	on	the	master
branch	since	it	contains	more	recent	snapshots	than	the	HEAD.	This	is	reflected	in
the	git	branch	output,	which	tells	us	that	we’re	currently	on	(no	branch).

Create	a	New	Branch
We	can’t	add	new	commits	when	we’re	not	on	a	branch,	so	let’s	create	one	now.
This	will	take	our	current	working	directory	and	fork	it	into	a	new	branch.

git	branch	crazy

Note	that	git	branch	is	a	versatile	command	that	can	be	used	to	either	list
branches	or	create	them.	However,	the	above	command	only	creates	the	crazy
branch—it	doesn’t	check	it	out.

git	checkout	crazy

We’re	now	free	to	experiment	in	the	working	directory	without	disturbing
anything	in	the	master	branch.	The	crazy	branch	is	a	completely	isolated
development	environment	that	can	be	visualized	as	the	following.

Creating	a	new	branch

Right	now,	the	crazy	branch,	HEAD,	and	working	directory	are	the	exact	same	as
the	fourth	commit.	But	as	soon	as	we	add	another	snapshot,	we’ll	see	a	fork	in
our	project	history.

Make	a	Rainbow
We’ll	continue	developing	our	crazy	experiment	by	changing	crazy.html	to	the
following.

<!DOCTYPE	html>

<html	lang="en">

<head>

		<title>A	Crazy	Experiment</title>

		<meta	charset="utf-8"	/>

</head>

<body>

		<h1>A	Crazy	Experiment</h1>

		<p>Look!	A	Rainbow!</p>

		

				<li	style="color:	red">Red

				<li	style="color:	orange">Orange

				<li	style="color:	yellow">Yellow

				<li	style="color:	green">Green

				<li	style="color:	blue">Blue

				<li	style="color:	indigo">Indigo

				<li	style="color:	violet">Violet

		

				

		<p>Return	to	home	page</p>

</body>

</html>

Stage	and	Commit	the	Rainbow
Hopefully,	you’re	relatively	familiar	with	staging	and	committing	snapshots	by
now:

git	add	crazy.html

git	status

git	commit	-m	"Add	a	rainbow	to	crazy.html"

After	committing	on	the	crazy	branch,	we	can	see	two	independent	lines	of
development	in	our	project:

Forked	project	history

Also	notice	that	the	HEAD	(designated	by	the	red	circle)	automatically	moved
forward	to	the	new	commit,	which	is	intuitively	what	we	would	expect	when
developing	a	project.

The	above	diagram	represents	the	complete	state	of	our	repository,	but	git	log
only	displays	the	history	of	the	current	branch:

677e0e0	Add	a	rainbow	to	crazy.html

514fbe7	Add	a	crazzzy	experiment

*1c310d2	Add	navigation	links

*54650a3	Create	blue	and	orange	pages

*b650e4b	Create	index	page

Note	that	the	history	before	the	fork	is	considered	part	of	the	new	branch
(marked	with	asterisks	above).	That	is	to	say,	the	crazy	history	spans	all	the	way
back	to	the	first	commit:

History	of	the	crazy	branch

The	project	as	a	whole	now	has	a	complex	history;	however,	each	individual
branch	still	has	a	linear	history	(snapshots	occur	one	after	another).	This	means
that	we	can	interact	with	branches	in	the	exact	same	way	as	we	learned	in	the
first	two	modules.

Rename	the	Rainbow
Let’s	add	one	more	snapshot	to	the	crazy	branch.	Rename	crazy.html	to
rainbow.html,	then	use	the	following	Git	commands	to	update	the	repository.

git	status

git	rm	crazy.html

git	status

git	add	rainbow.html

git	status

The	git	rm	command	tells	Git	to	stop	tracking	crazy.html	(and	delete	it	if
necessary),	and	git	add	starts	tracking	rainbow.html.	The	renamed:
crazy.html	->	rainbow.html	message	in	the	final	status	output	shows	us	that
Git	is	smart	enough	to	figure	out	when	we’re	renaming	a	file.

Our	snapshot	is	staged	and	ready	to	be	committed:

git	commit	-m	"Rename	crazy.html	to	rainbow.html"

git	log	--oneline

After	this	addition,	our	complete	repository	history	looks	like	the	following.
Remember	that	the	crazy	branch	doesn’t	include	any	commits	in	master	after
the	fork.

Current	project	history

Return	to	the	Master	Branch
Let’s	switch	back	to	the	master	branch:

git	checkout	master

git	branch

git	log	--oneline

After	the	checkout,	crazy.html	doesn’t	exist	in	the	working	directory,	and	the
commits	from	the	last	few	steps	don’t	appear	in	the	history.	These	two	branches
became	completely	independent	development	environments	after	they	forked.
You	can	think	of	them	as	separate	project	folders	that	you	switch	between	with
git	checkout.	They	do,	however,	share	their	first	four	commits.

Shared	branch	history

Create	a	CSS	Branch
We’re	going	to	put	our	crazy	experiment	on	the	backburner	for	now	and	turn	our
attention	to	formatting	the	HTML	pages	with	a	cascading	stylesheet	(CSS).
Again,	if	you’re	not	all	that	comfortable	with	HTML	and	CSS,	the	content	of	the
upcoming	files	isn’t	nearly	as	important	as	the	Git	commands	used	to	manage
them.

Let’s	create	and	check	out	a	new	branch	called	css.

git	branch	css

git	checkout	css

The	new	branch	points	to	the	currently	checked	out	snapshot,	which	happens	to
coincide	with	the	master	branch:

Creating	the	css	branch

Add	a	CSS	Stylesheet
Next,	create	a	file	called	style.css	with	the	following	content.	This	CSS	is	used
to	apply	formatting	to	the	HTML	in	our	other	files.

body	{

		padding:	20px;

		font-family:	Verdana,	Arial,	Helvetica,	sans-serif;

		font-size:	14px;

		color:	#111;

}

p,	ul	{

		margin-bottom:	10px;

}

ul	{

		margin-left:	20px;

}

Commit	the	stylesheet	in	the	usual	fashion.

git	add	style.css

git	status

git	commit	-m	"Add	CSS	stylesheet"

Link	the	Stylesheet
We	still	need	to	tell	the	HTML	pages	to	use	the	formatting	in	style.css.	Add
the	following	text	on	a	separate	line	after	the	<title>	element	in	index.html,
blue.html,	and	orange.html	(remember	that	rainbow.html	only	exists	in	the
crazy	branch).	You	should	be	able	to	see	the	CSS	formatting	by	opening
index.html	in	a	web	browser.

<link	rel="stylesheet"	href="style.css"	/>

Commit	the	changes.

git	add	index.html	blue.html	orange.html

git	status

git	commit	-m	"Link	HTML	pages	to	stylesheet"

git	log	--oneline

This	results	in	a	repository	history	that	looks	like:

Current	project	history

Return	to	the	Master	Branch	(Again)
The	css	branch	let	us	create	and	test	our	formatting	without	threatening	the
stability	of	the	master	branch.	But,	now	we	need	to	merge	these	changes	into	the
main	project.	Before	we	attempt	the	merge,	we	need	to	return	to	the	master
branch.

git	checkout	master

Verify	that	style.css	doesn’t	exist	and	that	HTML	pages	aren’t	linked	to	it.
Our	repository	history	remains	unchanged,	but	the	working	directory	now
matches	the	snapshot	pointed	to	by	the	master	branch.

Current	project	history

Take	a	look	at	the	git	log	--oneline	output	as	well.

af23ff4	Revert	"Add	a	crazzzy	experiment"

a50819f	Add	a	crazzzy	experiment

4cd95d9	Add	navigation	links

dcb9e07	Create	blue	and	orange	pages

f757eb3	Create	index	page

As	expected,	there	is	no	mention	of	the	CSS	additions	in	the	history	of	master,
but	we’re	about	to	change	that.

Merge	the	CSS	Branch
Use	the	git	merge	command	to	take	the	snapshots	from	the	css	branch	and	add
them	to	the	master	branch.

git	merge	css

Notice	that	this	command	always	merges	into	the	current	branch:	css	remains
unchanged.	Check	the	history	to	make	sure	that	the	css	history	has	been	added

to	master.

git	log	--oneline

The	following	diagram	visualizes	the	merge.

Merging	the	css	branch	into	master

Instead	of	re-creating	the	commits	in	css	and	adding	them	to	the	history	of
master,	Git	reuses	the	existing	snapshots	and	simply	moves	the	tip	of	master	to
match	the	tip	of	css.	This	kind	of	merge	is	called	a	fast-forward	merge,	since
Git	is	“fast-forwarding”	through	the	new	commits	in	the	css	branch.

After	the	merge,	both	branches	have	the	exact	same	history,	which	makes	them
redundant.	Unless	we	wanted	to	keep	developing	on	the	css	branch,	we’re	free
to	get	rid	of	it.

Delete	the	CSS	Branch
We	can	safely	delete	a	branch	by	passing	the	-d	flag	to	git	branch.

git	branch	-d	css

git	branch

Since	css	and	master	represent	the	same	branch,	our	history	looks	the	same,
though	the	css	branch	has	been	removed.	I’ve	also	put	the	master	branch’s
commits	in	a	straight	line	in	the	following	visualization,	making	it	easier	to	track
during	the	upcoming	modules.

Deleting	the	css	branch

Deleting	branches	is	a	relatively	“safe”	operation	in	the	sense	that	Git	will	warn
you	if	you’re	deleting	an	unmerged	branch.	This	is	just	another	example	of	Git’s
commitment	to	never	losing	your	work.

Conclusion
This	module	used	two	branches	to	experiment	with	new	additions.	In	both	cases,
branches	gave	us	an	environment	that	was	completely	isolated	from	the	“stable”
version	of	our	website	(the	master	branch).	One	of	our	experiments	is	waiting
for	us	in	the	next	module,	while	our	CSS	changes	have	been	merged	into	the
stable	project,	and	its	branch	is	thus	obsolete.	Using	branches	to	develop	small
features	like	these	is	one	of	the	hallmarks	of	Git-based	software	management.

While	this	module	relied	heavily	on	branch	diagrams	to	show	the	complete	state
of	the	repository,	you	don’t	need	to	keep	this	high-level	overview	in	mind	during
your	everyday	development.	Creating	a	new	branch	is	really	just	a	way	to
request	an	independent	working	directory,	staging	snapshot,	and	history.	You
can	think	of	branches	as	a	way	to	multiply	the	functionality	presented	in	the	first

can	think	of	branches	as	a	way	to	multiply	the	functionality	presented	in	the	first
two	module.

Next,	we’ll	practice	our	branch	management	skills	by	examining	the	typical
workflow	of	veteran	Git	users.	We’ll	also	discover	more	complicated	merges
than	the	fast-forward	merge	introduced	above.

Quick	Reference
git	branch

List	all	branches.

git	branch	<branch-name>

Create	a	new	branch	using	the	current	working	directory	as	its	base.

git	checkout	<branch-name>

Make	the	working	directory	and	the	HEAD	match	the	specified	branch.

git	merge	<branch-name>

Merge	a	branch	into	the	checked-out	branch.

git	branch	-d	<branch-name>

Delete	a	branch.

git	rm	<file>

Remove	a	file	from	the	working	directory	(if	applicable)	and	stop	tracking	the
file.

Branches,	Part	II
Now	that	we’ve	covered	the	mechanics	behind	Git	branches,	we	can	discuss	the
practical	impact	that	they	have	on	the	software	development	process.	Instead	of
introducing	new	commands,	this	module	covers	how	the	typical	Git	user	applies
this	workflow	to	real	projects,	as	well	as	some	of	the	problems	that	arise	in	a
branched	environment.

To	Git,	a	branch	is	a	branch,	but	it’s	often	useful	to	assign	special	meaning	to
different	branches.	For	example,	we’ve	been	using	master	as	the	stable	branch
for	our	example	project,	and	we’ve	also	used	a	temporary	branch	to	add	some
CSS	formatting.	Temporary	branches	like	the	latter	are	called	topic	branches
because	they	exist	to	develop	a	certain	topic,	then	they	are	deleted.	We’ll	work
with	two	types	of	topic	branches	later	in	this	module.

Amid	our	exploration	of	Git	branches,	we’ll	also	discover	that	some	merges
cannot	be	“fast-forwarded.”	When	the	history	of	two	branches	diverges,	a
dedicated	commit	is	required	to	combine	the	branches.	This	situation	may	also
give	rise	to	a	merge	conflict,	which	must	be	manually	resolved	before	anything
can	be	committed	to	the	repository.

Download	the	repository	for	this	module

If	you’ve	been	following	along	from	the	previous	module,	you	already	have
everything	you	need.	Otherwise,	download	the	zipped	Git	repository	from	the
above	link,	uncompress	it,	and	you’re	good	to	go.

Continue	the	Crazy	Experiment
Let’s	start	by	checking	out	the	crazy	branch.

git	branch

git	checkout	crazy

git	log	--oneline

http://rypress.com/tutorials/git/media/repo-zips/branches-2.zip

The	crazy	branch	is	a	longer-running	type	of	topic	branch	called	a	feature
branch.	This	is	fitting,	as	it	was	created	with	the	intention	of	developing	a
specific	feature.	It’s	also	a	term	that	makes	Git’s	contribution	to	the
development	workflow	readily	apparent:	branches	enable	you	to	focus	on
developing	one	clearly	defined	feature	at	a	time.

This	brings	us	to	my	rule-of-thumb	for	using	Git	branches:

Create	a	new	branch	for	each	major	addition	to	your	project.
Don’t	create	a	branch	if	you	can’t	give	it	a	specific	name.

Following	these	simple	guidelines	will	have	a	dramatic	impact	on	your
programming	efficiency.

Merge	the	CSS	Updates
Note	that	the	CSS	formatting	we	merged	into	master	is	nowhere	to	be	found.
This	presents	a	bit	of	a	problem	if	we	want	our	experiment	to	reflect	these
updates.	Conveniently,	Git	lets	us	merge	changes	into	any	branch	(not	just	the
master	branch).	So,	we	can	pull	the	updates	in	with	the	familiar	git	merge
command.	Remember	that	merging	only	affects	the	checked-out	branch.

git	merge	master

git	log	--oneline

As	of	Git	1.7.10,	this	will	open	your	editor	and	prompt	you	for	a	message
explaining	why	the	commit	was	necessary.	You	can	use	the	default	Merge
branch	'master'	into	crazy.	When	you	save	and	close	the	file,	you’ll	notice
an	extra	commit	in	your	project	history.	Recall	that	our	first	merge	didn’t	add
any	new	commits;	it	just	“fast-forwarded”	the	tip	of	the	master	branch.	This	was
not	the	case	for	our	new	merge,	which	is	shown	below.

Merging	master	into	the	crazy	branch

Take	a	moment	to	examine	why	the	current	merge	couldn’t	be	a	fast-forward
one.	How	could	Git	have	walked	the	crazy	pointer	over	to	the	tip	of	the	master
branch?	It’s	not	possible	without	backtracking,	which	kind	of	defeats	the	idea	of
“fast-forwarding.”	We’re	left	with	a	new	way	to	combine	branches:	the	3-way
merge.

A	3-way	merge	occurs	when	you	try	to	merge	two	branches	whose	history	has
diverged.	It	creates	an	extra	merge	commit	to	function	as	a	link	between	the	two
branches.	As	a	result,	it	has	two	parent	commits.	The	above	figure	visualizes	this
with	two	arrows	originating	from	the	tip	of	crazy.	It’s	like	saying	“this	commit
comes	from	both	the	crazy	branch	and	from	master.”	After	the	merge,	the
crazy	branch	has	access	to	both	its	history	and	the	master	history.

The	name	comes	from	the	internal	method	used	to	create	the	merge	commit.	Git

looks	at	three	commits	(numbered	in	the	above	figure)	to	generate	the	final	state
of	the	merge.

This	kind	of	branch	interaction	is	a	big	part	of	what	makes	Git	such	a	powerful
development	tool.	We	can	not	only	create	independent	lines	of	development,	but
we	can	also	share	information	between	them	by	tying	together	their	histories
with	a	3-way	merge.

Style	the	Rainbow	Page
Now	that	we	have	access	to	the	CSS	updates	from	master,	we	can	continue
developing	our	crazy	experiment.	Link	the	CSS	stylesheet	to	rainbow.html	by
adding	the	following	HTML	on	the	line	after	the	<title>	element.

<link	rel="stylesheet"	href="style.css"	/>

Stage	and	commit	the	update,	then	check	that	it’s	reflected	in	the	history.

git	status

git	commit	-a	-m	"Add	CSS	stylesheet	to	rainbow.html"

git	log	--oneline

Notice	that	we	skipped	the	staging	step	this	time	around.	Instead	of	using	git
add,	we	passed	the	-a	flag	to	git	commit.	This	convenient	parameter	tells	Git	to
automatically	include	all	tracked	files	in	the	staged	snapshot.	Combined	with	the
-m	flag,	we	can	stage	and	commit	snapshots	with	a	single	command.	However,
be	careful	not	to	include	unintended	files	when	using	the	-a	flag.

Link	to	the	Rainbow	Page
We	still	need	to	add	a	navigation	link	to	the	home	page.	Change	the
“Navigation”	section	of	index.html	to	the	following.

<h2>Navigation</h2>

		<li	style="color:	#F90">

				The	Orange	Page

		

		<li	style="color:	#00F">

				The	Blue	Page

		

		

				The	Rainbow	Page

		

As	usual,	stage	and	commit	the	snapshot.

git	commit	-a	-m	"Link	index.html	to	rainbow.html"

git	log	--oneline

Fork	an	Alternative	Rainbow
Next,	we’re	going	to	brainstorm	an	alternative	to	the	current	rainbow.html	page.
This	is	a	perfect	time	to	create	another	topic	branch:

git	branch	crazy-alt

git	checkout	crazy-alt

Remember,	we	can	do	whatever	we	want	here	without	worrying	about	either
crazy	or	master.	When	git	branch	creates	a	branch,	it	uses	the	current	HEAD	as
the	starting	point	for	the	new	branch.	This	means	that	we	begin	with	the	same
files	as	crazy	(if	we	called	git	branch	from	master,	we	would	have	had	to	re-
create	rainbow.html).	After	creating	the	new	branch,	our	repository’s	history
looks	like:

Creating	the	crazy-alt	branch

Change	the	Rainbow
Change	the	colorful	list	in	rainbow.html	from:

		<li	style="color:	red">Red

		<li	style="color:	orange">Orange

		<li	style="color:	yellow">Yellow

		<li	style="color:	green">Green

		<li	style="color:	blue">Blue

		<li	style="color:	indigo">Indigo

		<li	style="color:	violet">Violet

to	the	following:

<div	style="background-color:	red"></div>

<div	style="background-color:	orange"></div>

<div	style="background-color:	yellow"></div>

<div	style="background-color:	green"></div>

<div	style="background-color:	blue"></div>

<div	style="background-color:	indigo"></div>

<div	style="background-color:	violet"></div>

Then,	add	some	CSS	formatting	to	<head>	on	the	line	after	the	<meta>	element:

<style>

		div	{

				width:	300px;

				height:	50px;

		}

</style>

If	you	open	rainbow.html	in	a	browser,	you	should	now	see	colorful	blocks	in
place	of	the	colorful	text.	Don’t	forget	to	commit	the	changes:

git	commit	-a	-m	"Make	a	REAL	rainbow"

The	resulting	project	history	is	show	below,	with	the	first	four	commits	omitted
for	the	sake	of	presentation.

Committing	on	the	crazy-alt	branch

Emergency	Update!
Our	boss	called	in	with	some	breaking	news!	He	needs	us	to	update	the	site
immediately,	but	what	do	we	do	with	our	rainbow.html	developments?	Well,
the	beauty	of	Git	branches	is	that	we	can	just	leave	them	where	they	are	and	add

the	breaking	news	to	master.

We’ll	use	what’s	called	a	hotfix	branch	to	create	and	test	the	news	updates.	In
contrast	to	our	relatively	long-running	feature	branch	(crazy),	hotfix	branches
are	used	to	quickly	patch	a	production	release.	For	example,	you’d	use	a	hotfix
branch	to	fix	a	time-sensitive	bug	in	a	public	software	project.	This	distinction	is
useful	for	demonstrating	when	it’s	appropriate	to	create	a	new	branch,	but	it	is
purely	conceptual—a	branch	is	a	branch	according	to	Git.

git	checkout	master

git	branch	news-hotfix

git	checkout	news-hotfix

Change	the	“News”	list	in	index.html	to	match	the	following.

<h2	style="color:	#C00">News</h2>

		Blue	Is	The	New	Hue

And,	create	a	new	HTML	page	called	news-1.html	with	the	following	content.

<!DOCTYPE	html>

<html	lang="en">

<head>

		<title>Blue	Is	The	New	Hue</title>

		<link	rel="stylesheet"	href="style.css"	/>

		<meta	charset="utf-8"	/>

</head>

<body>

		<h1	style="color:	#079">Blue	Is	The	New	Hue</h1>

		<p>European	designers	have	just	announced	that

		Blue	will	be	this	year's

		hot	color.</p>

				

		<p>Return	to	home	page</p>

</body>

</html>

We	can’t	use	git	commit	-a	to	automatically	stage	news-1.html	because	it’s	an
untracked	file	(as	shown	in	git	status).	So,	let’s	use	an	explicit	git	add:

git	add	index.html	news-1.html

git	status

git	commit	-m	"Add	1st	news	item"

Test	these	additions	in	a	browser	to	make	sure	that	the	links	work,	it’s	typo	free,
etc.	If	everything	looks	good,	we	can	“publish”	the	changes	by	merging	them
into	the	stable	master	branch.	Isolating	this	in	a	separate	branch	isn’t	really
necessary	for	our	trivial	example,	but	in	the	real	world,	this	would	give	you	the
opportunity	to	run	build	tests	without	touching	your	stable	project.

Publish	the	News	Hotfix
Remember	that	to	merge	into	the	master	branch,	we	first	need	to	check	it	out.

git	checkout	master

git	merge	news-hotfix

Since	master	now	contains	the	news	update,	we	can	delete	the	hotfix	branch:

git	branch	-d	news-hotfix

git	branch

The	following	diagram	reflects	our	repository’s	history	before	and	after	the
merge.	Can	you	figure	out	why	was	this	a	fast-forward	merge	instead	of	a	3-way
merge?

Fast-forwarding	master	to	the	news-hotfix	branch

Also	notice	that	we	have	another	fork	in	our	history	(the	commit	before	master
branches	in	two	directions),	which	means	we	should	expect	to	see	another	merge
commit	in	the	near	future.

Complete	the	Crazy	Experiment
Ok,	let’s	finish	up	our	crazy	experiment	with	one	more	commit.

git	checkout	crazy

Note	that	the	news	article	is	nowhere	to	be	found,	as	should	be	expected	(this

Note	that	the	news	article	is	nowhere	to	be	found,	as	should	be	expected	(this
branch	is	a	completely	isolated	development	environment).

We’ll	finish	up	our	crazy	experiment	by	adding	a	news	item	for	it	on	the	home
page.	Change	the	news	list	in	index.html	to	the	following:

<h2	style="color:	#C00">News</h2>

		Our	New	Rainbow

Astute	readers	have	probably	observed	that	this	directly	conflicts	with	what	we
changed	in	the	news-hotfix	branch.	We	should	not	manually	add	in	the	other
news	item	because	it	has	no	relationship	with	the	current	branch.	In	addition,
there	would	be	no	way	to	make	sure	the	link	works	because	news-1.html
doesn’t	exist	in	this	branch.	This	may	seem	trivial,	but	imagine	the	errors	that
could	be	introduced	had	news-hotfix	made	dozens	of	different	changes.

We’ll	simply	stage	and	commit	the	snapshot	as	if	there	were	no	conflicts:

git	commit	-a	-m	"Add	news	item	for	rainbow"

git	log	--oneline

Look	at	all	those	experimental	commits	(marked	with	asterisks	below)!

*42fa173	Add	news	item	for	rainbow

*7147cc5	Link	index.html	to	rainbow.html

*6aa4b3b	Add	CSS	stylesheet	to	rainbow.html

b9ae1bc	Merge	branch	'master'	into	crazy

ae4e756	Link	HTML	pages	to	stylesheet

98cd46d	Add	CSS	stylesheet

*33e25c9	Rename	crazy.html	to	rainbow.html

*677e0e0	Add	a	rainbow	to	crazy.html

506bb9b	Revert	"Add	a	crazzzy	experiment"

*514fbe7	Add	a	crazzzy	experiment

1c310d2	Add	navigation	links

54650a3	Create	blue	and	orange	pages

b650e4b	Create	index	page

Publish	the	Crazy	Experiment
We’re	finally	ready	to	merge	our	crazy	branch	back	into	master.

git	checkout	master

git	merge	crazy

You	should	get	a	message	that	reads:

Auto-merging	index.html

CONFLICT	(content):	Merge	conflict	in	index.html

Automatic	merge	failed;	fix	conflicts	and	then	commit	the	result.

This	is	our	first	merge	conflict.	Conflicts	occur	when	we	try	to	merge	branches
that	have	edited	the	same	content.	Git	doesn’t	know	how	to	combine	the	two
changes,	so	it	stops	to	ask	us	what	to	do.	We	can	see	exactly	what	went	wrong
with	the	familiar	git	status	command:

#	On	branch	master

#	Changes	to	be	committed:

#

#							new	file:			rainbow.html

#

#	Unmerged	paths:

#			(use	"git	add/rm	<file>..."	as	appropriate	to	mark	resolution)

#

#							both	modified:						index.html

#

We’re	looking	at	the	staged	snapshot	of	a	merge	commit.	We	never	saw	this

We’re	looking	at	the	staged	snapshot	of	a	merge	commit.	We	never	saw	this
with	the	first	3-way	merge	because	we	didn’t	have	any	conflicts	to	resolve.	But
now,	Git	stopped	to	let	us	modify	files	and	resolve	the	conflict	before
committing	the	snapshot.	The	“Unmerged	paths”	section	contains	files	that	have
a	conflict.

Open	up	index.html	and	find	the	section	that	looks	like:

<<<<<<<	HEAD

				Blue	Is	The	New	Hue

=======

				Our	New	Rainbow

>>>>>>>	crazy

Git	went	ahead	and	modified	the	conflicted	file	to	show	us	exactly	which	lines
are	afflicted.	The	format	of	the	above	text	shows	us	the	difference	between	the
two	versions	of	the	file.	The	section	labeled	<<<<<<<	HEAD	shows	us	the	version
in	the	current	branch,	while	the	part	after	the	=======	shows	the	version	in	the
crazy	branch.

Resolve	the	Merge	Conflicts
We	can	change	the	affected	lines	to	whatever	we	want	in	order	to	resolve	the
conflict.	Edit	the	news	section	of	index.html	to	keep	changes	from	both
versions:

<h2	style="color:	#C00">News</h2>

		Blue	Is	The	New	Hue

		Our	New	Rainbow

The	<<<<<<<,	=======,	and	>>>>>>>	markers	are	only	used	to	show	us	the
conflict	and	should	be	deleted.	Next,	we	need	to	tell	Git	that	we’re	done

resolving	the	conflict:

git	add	index.html

git	status

That’s	right,	all	you	have	to	do	is	add	index.html	to	the	staged	snapshot	to	mark
it	as	resolved.	Finally,	complete	the	3-way	merge:

git	commit

We	didn’t	use	the	-m	flag	to	specify	a	message	because	Git	already	gives	us	a
default	message	for	merge	commits.	It	also	gives	us	a	“Conflicts”	list,	which	can
be	particularly	handy	when	trying	to	figure	out	where	something	went	wrong	in
a	project.	Save	and	close	the	file	to	create	the	merge	commit.

The	final	state	of	our	project	looks	like	the	following.

Merging	the	crazy	branch	into	master

Cleanup	the	Feature	Branches
Since	our	crazy	experiment	has	been	successfully	merged,	we	can	get	rid	of	our
feature	branches.

git	branch	-d	crazy

git	branch	-d	crazy-alt

As	noted	in	the	last	module,	the	git	branch	-d	command	won’t	let	you	delete	a
branch	that	contains	unmerged	changes.	But,	we	really	do	want	to	scrap	the
alternative	experiment,	so	we’ll	follow	the	error	message’s	instructions	for
overriding	this	behavior:

git	branch	-D	crazy-alt

Because	we	never	merged	crazy-alt	into	master,	it	is	lost	forever.	However,
the	crazy	branch	is	still	accessible	through	its	commits,	which	are	now
reachable	via	the	master	branch.	That	is	to	say,	it	is	still	part	of	the	structure	of
the	repository’s	history,	even	though	we	deleted	our	reference	to	it.

Deleting	the	feature	branches

Fast-forward	merges	are	not	reflected	in	the	project	history.	This	is	the	tangible
distinction	between	fast-forward	merges	and	3-way	merges.	The	next	module
will	discuss	the	appropriate	usage	of	both	and	the	potential	complications	of	a
non-linear	history.

Conclusion
This	module	demonstrated	the	three	most	common	uses	of	Git	branches:

To	develop	long-running	features	(crazy)

To	apply	quick	updates	(news-hotfix)
To	record	the	evolution	of	a	project	(master)

In	the	first	two	cases,	we	needed	an	isolated	environment	to	test	some	changes
before	integrating	them	with	our	stable	code.	As	you	get	more	comfortable	with
Git,	you	should	find	yourself	doing	virtually	everything	in	an	isolated	topic
branch,	then	merging	it	into	a	stable	branch	once	you’re	done.	Practically,	this
means	you’ll	never	have	a	broken	version	of	your	project.

We	used	the	permanent	master	branch	as	the	foundation	for	all	of	these
temporary	branches,	effectively	making	it	the	historian	for	our	entire	project.	In
addition	to	master,	many	programmers	often	add	a	second	permanent	branch
called	develop.	This	lets	them	use	master	to	record	really	stable	snapshots	(e.g.,
public	releases)	and	use	develop	as	more	of	a	preparation	area	for	master.

This	module	also	introduced	the	3-way	merge,	which	combines	two	branches
using	a	dedicated	commit.	The	3-way	merge	and	the	fast-forward	merge	are
actually	what	makes	branching	so	powerful:	they	let	developers	share	and
integrate	independent	updates	with	reliable	results.

Next,	we’ll	learn	how	to	clean	up	our	repository’s	history.	Using	a	new	Git
command,	we’ll	be	able	to	better	manage	merge	commits	and	make	sure	our
history	is	easy	to	navigate.

Quick	Reference
git	commit	-a	-m	"<message>"

Stage	all	tracked	files	and	commit	the	snapshot	using	the	specified	message.

git	branch	-D	<branch-name>

Force	the	removal	of	an	unmerged	branch	(be	careful:	it	will	be	lost	forever).

Rebasing
Let’s	start	this	module	by	taking	an	in-depth	look	at	our	history.	The	six
commits	asterisked	below	are	part	of	the	same	train	of	thought.	We	even
developed	them	in	their	own	feature	branch.	However,	they	show	up
interspersed	with	commits	from	other	branches,	along	with	a	superfluous	merge
commit	(b9ae1bc).	In	other	words,	our	repository’s	history	is	kind	of	messy:

ec1b8cb	Merge	branch	'crazy'

*42fa173	Add	news	item	for	rainbow

3db88e1	Add	1st	news	item

*7147cc5	Link	index.html	to	rainbow.html

*6aa4b3b	Add	CSS	stylesheet	to	rainbow.html

b9ae1bc	Merge	branch	'master'	into	crazy

ae4e756	Link	HTML	pages	to	stylesheet

98cd46d	Add	CSS	stylesheet

*33e25c9	Rename	crazy.html	to	rainbow.html

*677e0e0	Add	a	rainbow	to	crazy.html

506bb9b	Revert	"Add	a	crazzzy	experiment"

*514fbe7	Add	a	crazzzy	experiment

1c310d2	Add	navigation	links

54650a3	Create	blue	and	orange	pages

b650e4b	Create	index	page

Fortunately,	Git	includes	a	tool	to	help	us	clean	up	our	commits:	git	rebase.
Rebasing	lets	us	move	branches	around	by	changing	the	commit	that	they	are
based	on.	Conceptually,	this	is	what	it	allows	us	to	do:

Rebasing	a	feature	branch	onto	master

After	rebasing,	the	feature	branch	has	a	new	parent	commit,	which	is	the	same
commit	pointed	to	by	master.	Instead	of	joining	the	branches	with	a	merge
commit,	rebasing	integrates	the	feature	branch	by	building	on	top	of	master.
The	result	is	a	perfectly	linear	history	that	reads	more	like	a	story	than	the
hodgepodge	of	unrelated	edits	shown	above.

To	explore	Git’s	rebasing	capabilities,	we’ll	need	to	build	up	our	example
project	so	that	we	have	something	to	work	with.	Then,	we’ll	go	back	and	rewrite
history	using	git	rebase.

Download	the	repository	for	this	module

If	you’ve	been	following	along	from	the	previous	module,	you	already	have
everything	you	need.	Otherwise,	download	the	zipped	Git	repository	from	the
above	link,	uncompress	it,	and	you’re	good	to	go.

Create	an	About	Section
We’ll	begin	by	creating	an	about	page	for	the	website.	Remember,	we	should	be
doing	all	of	our	work	in	isolated	branches	so	that	we	don’t	cause	any	unintended
changes	to	the	stable	version	of	the	project.

http://rypress.com/tutorials/git/media/repo-zips/rebasing.zip

git	branch	about

git	checkout	about

The	next	few	steps	break	this	feature	into	several	unnecessarily	small	commits
so	that	we	can	see	the	effects	of	a	rebase.	First,	make	a	new	directory	in	my-git-
repo	called	about.	Then,	create	the	empty	file	about/index.html.	Stage	and
commit	a	snapshot.

git	add	about

git	status

git	commit	-m	"Add	empty	page	in	about	section"

Note	that	git	add	can	also	add	entire	directories	to	the	staging	area.

Add	an	About	Page
Next,	we’ll	add	some	HTML	to	about/index.html:

<!DOCTYPE	html>

<html	lang="en">

<head>

		<title>About	Us</title>

		<link	rel="stylesheet"	href="../style.css"	/>

		<meta	charset="utf-8"	/>

</head>

<body>

		<h1>About	Us</h1>

		<p>We're	a	small,	colorful	website	with	just	two	employees:</p>

		

				Me:	The	Developer

				Mary:	The	Graphic	Designer

		

				

		<p>Return	to	home	page</p>

</body>

</html>

Stage	and	commit	the	snapshot.

git	status

git	commit	-a	-m	"Add	contents	to	about	page"

After	a	few	commits	on	this	branch,	our	history	looks	like	the	following.

Adding	the	about	branch

Another	Emergency	Update!
Our	boss	just	gave	us	some	more	breaking	news!	Again,	we’ll	use	a	hotfix
branch	to	update	the	site	without	affecting	our	about	page	developments.	Make
sure	to	base	the	updates	on	master,	not	the	about	branch:

git	checkout	master

git	branch	news-hotfix

git	checkout	news-hotfix

git	branch

Change	the	“News”	section	in	index.html	to:

<h2	style="color:	#C00">News</h2>

		Blue	Is	The	New	Hue

		Our	New	Rainbow

		A	Red	Rebellion

Commit	a	snapshot:

git	status

git	commit	-a	-m	"Add	2nd	news	item	to	index	page"

Then,	create	a	new	page	called	news-2.html:

<!DOCTYPE	html>

<html	lang="en">

<head>

		<title>A	Red	Rebellion</title>

		<link	rel="stylesheet"	href="style.css"	/>

		<meta	charset="utf-8"	/>

</head>

<body>

		<h1	style="color:	#C03">A	Red	Rebellion</h1>

				

		<p>Earlier	today,	several	American	design	firms

		announced	that	they	have	completely	rejected	the	use

		of	blue	in	any	commercial	ventures.	They	have

		opted	instead	for	Red.</p>

				

		<p>Return	to	home	page</p>

</body>

</html>

Stage	and	commit	another	snapshot:

Stage	and	commit	another	snapshot:

git	add	news-2.html

git	status

git	commit	-m	"Add	article	for	2nd	news	item"

Publish	News	Hotfix
We’re	ready	to	merge	the	news	update	back	into	master.

git	checkout	master

git	merge	news-hotfix

git	branch	-d	news-hotfix

The	master	branch	hasn’t	been	altered	since	we	created	news-hotfix,	so	Git	can
perform	a	fast-forward	merge.	Our	repository	now	looks	like	the	following.

Fast-forwarding	master	to	the	news-hotfix

Rebase	the	About	Branch
This	puts	us	in	the	exact	same	position	as	we	were	in	before	our	first	3-way
merge.	We	want	to	pull	changes	from	master	into	a	feature	branch,	only	this
time	we’ll	do	it	with	a	rebase	instead	of	a	merge.

git	checkout	about

git	rebase	master

git	log	--oneline

Originally,	the	about	branch	was	based	on	the	Merge	branch	'crazy-
experiment'	commit.	The	rebase	took	the	entire	about	branch	and	plopped	it
onto	the	tip	of	the	master	branch,	which	is	visualized	in	the	following	diagram.
Also	notice	that,	like	the	git	merge	command,	git	rebase	requires	you	to	be
on	the	branch	that	you	want	to	move.

Rebasing	the	about	branch	onto	master

After	the	rebase,	about	is	a	linear	extension	of	the	master	branch,	enabling	us	to
do	a	fast-forward	merge	later	on.	Rebasing	also	allowed	us	to	integrate	the	most
up-to-date	version	of	master	without	a	merge	commit.

Add	a	Personal	Bio
With	our	news	hotfix	out	of	the	way,	we	can	now	continue	work	on	our	about
section.	Create	the	file	about/me.html	with	the	following	contents:

<!DOCTYPE	html>

<html	lang="en">

<head>

		<title>About	Me</title>

		<link	rel="stylesheet"	href="../style.css"	/>

		<meta	charset="utf-8"	/>

</head>

<body>

		<h1>About	Me</h1>

		<p>I'm	a	big	nerd.</p>

		<h2>Interests</h2>

		

				Computers

				Mathematics

				Typography

		

		<p>Return	to	about	page</p>

</body>

</html>

Then,	commit	the	changes	to	the	repository.

git	add	about/me.html

git	commit	-m	"Add	HTML	page	for	personal	bio"

git	log	--oneline

Remember	that	thanks	to	the	rebase,	about	rests	on	top	of	master.	So,	all	of	our
about	section	commits	are	grouped	together,	which	would	not	be	the	case	had	we
merged	instead	of	rebased.	This	also	eliminates	an	unnecessary	fork	in	our
project	history.

Add	Dummy	Page	for	Mary
Once	again,	the	next	two	snapshots	are	unnecessarily	trivial.	However,	we’ll	use
an	interactive	rebase	to	combine	them	into	a	single	commit	later	on.	That’s	right,
git	rebase	not	only	lets	you	move	branches	around,	it	enables	you	to
manipulate	individual	commits	as	you	do	so.

Create	a	new	empty	file	in	the	about	section:	about/mary.html.

git	add	about

git	status

git	commit	-m	"Add	empty	HTML	page	for	Mary's	bio"

Link	to	the	About	Section
Then,	add	a	link	to	the	about	page	in	index.html	so	that	its	“Navigation”	section
looks	like	the	following.

<h2>Navigation</h2>

		

				About	Us

		

		<li	style="color:	#F90">

				The	Orange	Page

		

		<li	style="color:	#00F">

				The	Blue	Page

		

		

				The	Rainbow	Page

		

Don’t	forget	to	commit	the	change:

git	commit	-a	-m	"Add	link	to	about	section	in	home	page"

Clean	Up	the	Commit	History

Before	we	merge	into	the	master	branch,	we	should	make	sure	we	have	a	clean,
meaningful	history	in	our	feature	branch.	By	rebasing	interactively,	we	can
choose	how	each	commit	is	transferred	to	the	new	base.	Specify	an	interactive
rebase	by	passing	the	-i	flag	to	the	rebase	command:

git	rebase	-i	master

This	should	open	up	a	text	editor	populated	with	all	of	the	commits	introduced	in
the	about	branch,	listed	from	oldest	to	newest.	The	listing	defines	exactly	how
Git	will	transfer	the	commits	to	the	new	base.	Leaving	it	as	is	will	do	a	normal
git	rebase,	but	if	we	move	the	lines	around,	we	can	change	the	order	in	which
commits	are	applied.

In	addition,	we	can	replace	the	pick	command	before	each	line	to	edit	it	or
combine	it	with	other	commits.	All	of	the	available	commands	are	shown	in	the
comment	section	of	the	rebase	listing,	but	right	now,	we	only	need	the	squash
command.	This	will	condense	our	unnecessarily	small	commits	into	a	single,
meaningful	snapshot.	Change	your	listing	to	match	the	following:

pick	5cf316e	Add	empty	page	in	about	section

squash	964e013	Add	contents	to	about	page

pick	89db9ab	Add	HTML	page	for	personal	bio

squash	2bda8e5	Add	empty	HTML	page	for	Mary's	bio

pick	915466f	Add	link	to	about	section	in	home	page

Then,	begin	the	rebase	by	saving	and	closing	the	editor.	The	following	list
describes	the	rebasing	process	in-depth	and	tells	you	what	you	need	to	change
along	the	way.

1.	 Git	moves	the	5cf316e	commit	to	the	tip	of	master.
2.	 Git	combines	the	snapshots	of	964e013	and	5cf316e.
3.	 Git	stops	to	ask	you	what	commit	message	to	use	for	the	combined

snapshot.	It	automatically	includes	the	messages	of	both	commits,	but	you
can	delete	that	and	simplify	it	to	just	Create	the	about	page.	Save	and

exit	the	text	editor	to	continue.
4.	 Git	repeats	this	process	for	commits	89db9ab	and	2bda8e5.	Use	Begin

creating	bio	pages	for	the	message.
5.	 Git	adds	the	final	commit	(915466f)	on	top	of	the	commits	created	in	the

previous	steps.

You	can	see	the	result	of	all	this	activity	with	git	log	--oneline,	as	well	as	in
the	diagram	below.	The	five	commits	originally	in	about	have	been	condensed
to	three,	and	two	of	them	have	new	messages.	Also	notice	that	they	all	have
different	commit	ID’s.	These	new	ID’s	tell	us	that	we	didn’t	just	move	a	couple
of	commits—we’ve	literally	rewritten	our	repository	history	with	brand	new
commits.

Results	of	the	interactive	rebase

Interactive	rebasing	gives	you	complete	control	over	your	project	history,	but
this	can	also	be	very	dangerous.	For	example,	if	you	were	to	delete	a	line	from

this	can	also	be	very	dangerous.	For	example,	if	you	were	to	delete	a	line	from
the	rebase	listing,	the	associated	commit	wouldn’t	be	transferred	to	the	new	base,
and	its	content	would	be	lost	forever.	In	a	future	module,	we’ll	also	see	how
rewriting	history	can	get	you	in	trouble	with	public	Git	repositories.

Stop	to	Amend	a	Commit
The	previous	rebase	only	stopped	us	to	edit	the	messages	of	each	commit.	We
can	take	this	one	step	further	and	alter	a	snapshot	during	the	rebase.	Start	by
running	another	interactive	rebasing	session.	Note	that	we’ve	still	been	using
master	as	the	new	base	because	it	selects	the	desired	commits	from	the	about
branch.

git	rebase	-i	master

Specify	the	edit	command	for	the	second	commit,	as	shown	below.

pick	58dec2a	Create	the	about	page

edit	6ac8a9f	Begin	creating	bio	pages

pick	51c958c	Add	link	to	about	section	in	home	page

When	Git	starts	to	move	the	second	commit	to	the	new	base,	it	will	stop	to	do
some	“amending.”	This	gives	you	the	opportunity	to	alter	the	staged	snapshot
before	committing	it.

Stopping	to	amend	a	commit

Stopping	to	amend	a	commit

We’ll	leave	a	helpful	note	for	Mary,	whom	we’ll	meet	in	the	Remotes	module.
Open	up	about/mary.html	and	add	the	following.

[Mary,	please	update	your	bio!]

We’re	currently	between	commits	in	a	rebase,	but	we	can	alter	the	staged
snapshot	in	the	exact	same	way	as	we	have	been	throughout	this	entire	tutorial:

git	add	about/mary.html

git	status

git	commit	--amend

You	can	use	the	default	message	created	by	git	commit.	The	new	‑‑amend	flag
tells	Git	to	replace	the	existing	commit	with	the	staged	snapshot	instead	of
creating	a	new	one.	This	is	also	very	useful	for	fixing	premature	commits	that
often	occur	during	normal	development.

Continue	the	Interactive	Rebase
Remember	that	we’re	in	the	middle	of	a	rebase,	and	Git	still	has	one	more
commit	that	it	needs	to	re-apply.	Tell	Git	that	we’re	ready	to	move	on	with	the	-
-continue	flag:

git	rebase	--continue

git	log	--oneline

Note	that	our	history	still	appears	to	be	the	same	(because	we	used	the	default
commit	message	above),	but	the	Begin	creating	bio	pages	commit	contains
different	content	than	it	did	before	the	rebase,	along	with	a	new	ID.

If	you	ever	find	yourself	lost	in	the	middle	of	a	rebase	and	you’re	afraid	to
continue,	you	can	use	the	‑‑abort	flag	to	abandon	it	and	start	over	from	scratch.

Publish	the	About	Section
The	point	of	all	this	interactive	rebasing	is	to	generate	a	meaningful	history	that
we	can	merge	back	into	master.	And,	since	we’ve	rebased	about	onto	the	tip	of
master,	Git	will	be	able	to	perform	a	fast-forward	merge	instead	of	using	a
merge	commit	to	join	the	two	branches.

git	checkout	master

git	log	--oneline

git	merge	about

git	log	--oneline

Don’t	forget	to	delete	the	obsolete	about	branch.

git	branch	-d	about

Our	final	history	is	shown	in	the	figure	below.	As	you	can	see,	a	linear	history	is
much	easier	to	comprehend	than	the	back-and-forth	merging	of	the	previous
module.	But	on	the	other	hand,	we	don’t	have	the	slightest	notion	of	how	we	got
to	our	current	state.

Merging	and	deleting	the	about	branch

Conclusion
Rebasing	enables	fast-forward	merges	by	moving	a	branch	to	the	tip	of	another
branch.	It	effectively	eliminates	the	need	for	merge	commits,	resulting	in	a
completely	linear	history.	To	an	outside	observer,	it	will	seem	as	though	you

created	every	part	of	your	project	in	a	neatly	planned	sequence,	even	though	you
may	have	explored	various	alternatives	or	developed	unrelated	features	in
parallel.	Rebasing	gives	you	the	power	to	choose	exactly	what	gets	stored	in
your	repositories.

This	can	actually	be	a	bit	of	a	controversial	topic	within	the	Git	community.
Some	believe	that	the	benefits	discussed	in	this	module	aren’t	worth	the	hassle
of	rewriting	history.	They	take	a	more	“pure”	approach	to	Git	by	saying	that
your	history	should	reflect	exactly	what	you’ve	done,	ensuring	that	no
information	is	ever	lost.	Furthermore,	an	advanced	configuration	of	git	log	can
display	a	linear	history	from	a	highly-branched	repository.

But,	others	contend	that	merge	commits	should	be	meaningful.	Instead	of
merging	at	arbitrary	points	just	to	access	updates,	they	claim	that	merge	commits
should	represent	a	symbolic	joining	of	two	branches.	In	particular,	large
software	projects	(such	as	the	Linux	kernel)	typically	advocate	interactive
rebasing	to	keep	the	repository	as	clean	and	straightforward	as	possible.

The	use	of	git	rebase	is	entirely	up	to	you.	Customizing	the	evolution	of	your
project	can	be	very	beneficial,	but	it	might	not	be	worth	the	trouble	when	you
can	accomplish	close	to	the	same	functionality	using	merges	exclusively.	As	a
related	note,	you	can	use	the	following	command	to	force	a	merge	commit	when
Git	would	normally	do	a	fast-forward	merge.

git	merge	--no-ff	<branch-name>

The	next	module	will	get	a	little	bit	more	involved	in	our	project	history.	We’ll
try	fixing	mistakes	via	complex	rebases	and	even	learn	how	to	recover	deleted
commits.

Quick	Reference
git	rebase	<new-base>

Move	the	current	branch’s	commits	to	the	tip	of	<new-base>,	which	can	be

either	a	branch	name	or	a	commit	ID.

git	rebase	-i	<new-base>

Perform	an	interactive	rebase	and	select	actions	for	each	commit.

git	commit	--amend

Add	staged	changes	to	the	most	recent	commit	instead	of	creating	a	new	one.

git	rebase	--continue

Continue	a	rebase	after	amending	a	commit.

git	rebase	--abort

Abandon	the	current	interactive	rebase	and	return	the	repository	to	its	former
state.

git	merge	--no-ff	<branch-name>

Force	a	merge	commit	even	if	Git	could	do	a	fast-forward	merge.

Rewriting	History
The	previous	module	on	rebasing	taught	us	how	to	move	commits	around	and
perform	some	basic	edits	while	doing	so,	but	now	we’re	going	to	really	get	our
hands	dirty.	We’ll	learn	how	to	split	up	commits,	revive	lost	snapshots,	and
completely	rewrite	a	repository’s	history	to	our	exact	specifications.

Hopefully,	this	module	will	get	you	much	more	comfortable	with	the	core	Git
components,	as	we’ll	be	inspecting	and	editing	the	internal	makeup	of	our
project.

Download	the	repository	for	this	module

If	you’ve	been	following	along	from	the	previous	module,	you	already	have
everything	you	need.	Otherwise,	download	the	zipped	Git	repository	from	the
above	link,	uncompress	it,	and	you’re	good	to	go.

Create	the	Red	Page
First,	let’s	create	a	new	branch	and	add	a	few	more	HTML	pages.

git	checkout	-b	new-pages

git	branch

Notice	that	we	created	a	new	branch	and	checked	it	out	in	a	single	step	by
passing	the	-b	flag	to	the	git	checkout	command.

Next,	create	the	file	red.html	and	add	the	following	content:

<!DOCTYPE	html>

<html	lang="en">

<head>

		<title>The	Red	Page</title>

		<link	rel="stylesheet"	href="style.css"	/>

http://rypress.com/tutorials/git/media/repo-zips/rewriting-history.zip

		<meta	charset="utf-8"	/>

</head>

<body>

		<h1	style="color:	#C00">The	Red	Page</h1>

		<p>Red	is	the	color	of	passion!</p>

				

		<p>Return	to	home	page</p>

</body>

</html>

We’ll	hold	off	on	committing	this	page	for	the	moment.

Create	the	Yellow	Page
Create	a	file	called	yellow.html,	which	should	look	like	the	following.

<!DOCTYPE	html>

<html	lang="en">

<head>

		<title>The	Yellow	Page</title>

		<link	rel="stylesheet"	href="style.css"	/>

		<meta	charset="utf-8"	/>

</head>

<body>

		<h1	style="color:	#FF0">The	Yellow	Page</h1>

		<p>Yellow	is	the	color	of	the	sun!</p>

				

		<p>Return	to	home	page</p>

</body>

</html>

Link	and	Commit	the	New	Pages

Next,	we’ll	link	both	new	pages	to	the	home	page.	Add	the	following	items	to
the	“Navigation”	section	in	index.html:

<li	style="color:	#C00">

		The	Red	Page

<li	style="color:	#FF0">

		The	Yellow	Page

Then,	commit	all	of	these	changes	in	a	single	snapshot.

git	add	red.html	yellow.html	index.html

git	status

git	commit	-m	"Add	new	HTML	pages"

This	is	an	example	of	a	bad	commit.	It	performed	multiple,	unrelated	tasks,	and
it	has	a	relatively	generic	commit	message.	Thus	far,	we	haven’t	really	specified
when	it’s	appropriate	to	commit	changes,	but	the	general	rules	are	essentially	the
same	as	for	branch	creation:

Commit	a	snapshot	for	each	significant	addition	to	your	project.
Don’t	commit	a	snapshot	if	you	can’t	come	up	with	a	single,	specific
message	for	it.

This	will	ensure	that	your	project	has	a	meaningful	commit	history,	which	gives
you	the	ability	to	see	exactly	when	and	where	a	feature	was	added	or	a	piece	of
functionality	was	broken.	However,	in	practice,	you’ll	often	wind	up	committing
several	changes	in	a	single	snapshot,	since	you	won’t	always	know	what
constitutes	a	“well-defined”	addition	as	you’re	developing	a	project.	Fortunately,
Git	lets	us	go	back	and	fix	up	these	problem	commits	after	the	fact.

Create	and	Commit	the	Green	Page

Let’s	create	one	more	page	before	splitting	that	“bad”	commit:	Add	the
following	HTML	to	a	file	called	green.html.

<!DOCTYPE	html>

<html	lang="en">

<head>

		<title>The	Green	Page</title>

		<link	rel="stylesheet"	href="style.css"	/>

		<meta	charset="utf-8"	/>

</head>

<body>

		<h1	style="color:	#0C0">The	Green	Page</h1>

		<p>Green	is	the	color	of	earth.</p>

				

		<p>Return	to	home	page</p>

</body>

</html>

Add	a	link	to	index.html	in	the	“Navigation”	section:

<li	style="color:	#0C0">

		The	Green	Page

And	finally,	stage	the	green	page	and	commit	the	snapshot.

git	add	green.html	index.html

git	status

git	commit	-m	"Add	green	page"

Begin	an	Interactive	Rebase
The	commits	introduced	in	our	new-pages	branch	are:

4c3027c	Add	green	page

db96c72	Add	new	HTML	pages

But,	we	want	these	commits	to	look	more	like:

4c3027c	Add	green	page

9b1a64f	Add	yellow	page

77a1cf1	Add	red	page

To	achieve	this,	we	can	use	the	same	interactive	rebasing	method	covered	in	the
previous	module,	only	this	time	we’ll	actually	create	commits	in	the	middle	of
the	rebasing	procedure.

git	rebase	-i	master

Change	the	rebase	listing	to	the	following,	then	save	the	file	and	exit	the	editor
to	begin	the	rebase.

edit	db96c72	Add	new	HTML	pages

pick	4c3027c	Add	green	page

Undo	the	Generic	Commit
First,	let’s	take	a	look	at	where	we	are	with	git	log	--oneline:

db96c72	Add	new	HTML	pages

7070b0e	Add	link	to	about	section	in	home	page

...

When	Git	encountered	the	edit	command	in	the	rebase	configuration,	it	stopped
to	let	us	edit	the	commit.	As	a	result,	the	green	page	commit	doesn’t	appear	in
our	history	yet.	This	should	be	familiar	from	the	previous	module.	But	instead	of

amending	the	current	commit,	we’re	going	to	completely	remove	it:

git	reset	--mixed	HEAD~1

git	log	--oneline

git	status

The	git	reset	command	moves	the	checked	out	snapshot	to	a	new	commit,	and
the	HEAD~1	parameter	tells	it	to	reset	to	the	commit	that	occurs	immediately
before	the	current	HEAD	(likewise,	HEAD~2	would	refer	to	second	commit	before
HEAD).	In	this	particular	case,	HEAD~1	happens	to	coincide	with	master.	The
effect	on	our	repository	can	be	visualized	as:

Resetting	to	HEAD~1

You	may	recall	from	Undoing	Changes	that	we	used	git	reset	--hard	to	undo
uncommitted	changes	to	our	project.	The	--hard	flag	told	Git	to	make	the
working	directory	look	exactly	like	the	most	recent	commit,	giving	us	the
intended	effect	of	removing	uncommitted	changes.

But,	this	time	we	used	the	--mixed	flag	to	preserve	the	working	directory,	which
contains	the	changes	we	want	to	separate.	That	is	to	say,	the	HEAD	moved,	but	the
working	directory	remained	unchanged.	Of	course,	this	results	in	a	repository
with	uncommitted	modifications.	We	now	have	the	opportunity	to	add	the
red.html	and	yellow.html	files	to	distinct	commits.

Split	the	Generic	Commit

Split	the	Generic	Commit
Let’s	start	with	the	red	page.	Since	we	only	want	to	commit	content	that	involves
the	red	page,	we’ll	have	to	manually	go	in	and	remove	the	yellow	page’s	link
from	the	“Navigation”	section.	In	index.html,	change	this	section	to	match	the
following:

<h2>Navigation</h2>

		

				About	Us

		

		<li	style="color:	#F90">

				The	Orange	Page

		

		<li	style="color:	#00F">

				The	Blue	Page

		

		

				The	Rainbow	Page

		

		<li	style="color:	#C00">

				The	Red	Page

		

Now,	we	can	group	the	red	page’s	updates	into	an	independent	commit.

git	add	red.html	index.html

git	status

git	commit	-m	"Add	red	page"

Next	up	is	the	yellow	page.	Go	ahead	and	add	it	back	to	the	“Navigation”	section
in	index.html:

<li	style="color:	#FF0">

		The	Yellow	Page

And	again,	stage	and	commit	the	snapshot.

git	add	yellow.html	index.html

git	status

git	commit	-m	"Add	yellow	page"

We’ve	successfully	split	up	the	contents	of	a	single	commit	into	two	new
snapshots,	as	shown	below.

Creating	two	new	commits	while	rebasing

But,	don’t	forget	that	the	rebase	still	needs	to	transfer	the	green	page:

git	rebase	--continue

To	summarize,	we	removed	the	“bad”	commit	from	the	current	branch	with	git
reset,	keeping	the	contained	HTML	files	intact	with	the	‑‑mixed	flag.	Then,	we
committed	them	in	separate	snapshots	with	the	usual	git	add	and	git	commit
commands.	The	point	to	remember	is	that	during	a	rebase	you	can	add,	delete,
and	edit	commits	to	your	heart’s	content,	and	the	entire	result	will	be	moved	to
the	new	base.

Remove	the	Last	Commit
Next,	we’re	going	to	“accidentally”	remove	the	green	page	commit	so	we	can
learn	how	to	retrieve	it	via	Git’s	internal	repository	data.

git	reset	--hard	HEAD~1

git	status

git	log	--oneline

This	moves	the	checked-out	commit	backward	by	one	snapshot,	along	with	the
new-pages	pointer.	Note	that	git	status	tells	us	that	we	have	nothing	to
commit,	since	the	--hard	flag	obliterated	any	changes	in	the	working	directory.
And	of	course,	the	git	log	output	shows	that	the	new-pages	branch	no	longer
contains	the	green	commit.

This	behavior	is	slightly	different	from	the	reset	we	used	in	the	interactive
rebase:	this	time	the	branch	moved	with	the	new	HEAD.	Since	we	were	on	(no
branch)	during	the	rebase,	there	was	no	branch	tip	to	move.	However,	in
general,	git	reset	is	used	to	move	branch	tips	around	and	optionally	alter	the
working	directory	via	one	of	its	many	flags	(e.g.,	--mixed	or	--hard).

Removing	the	most	recent	commit

The	commit	that	we	removed	from	the	branch	is	now	a	dangling	commit.
Dangling	commits	are	those	that	cannot	be	reached	from	any	branch	and	are	thus
in	danger	of	being	lost	forever.

Open	the	Reflog
Git	uses	something	called	the	reflog	to	record	every	change	you	make	to	your
repository.	Let’s	take	a	look	at	what	it	contains:

git	reflog

The	resulting	output	should	look	something	like	the	following.	Depending	on
your	version	of	Git,	the	messages	might	be	slightly	different.	You	can	press
Space	to	scroll	through	the	content	or	q	to	exit.

9b1a64f	HEAD@{0}:	reset:	moving	to	HEAD~1

002185c	HEAD@{1}:	rebase	-i	(finish):	returning	to	refs/heads/new-pages

002185c	HEAD@{2}:	rebase	-i	(pick):	Add	green	page

9b1a64f	HEAD@{3}:	commit:	Add	yellow	page

77a1cf1	HEAD@{4}:	commit:	Add	red	page

7070b0e	HEAD@{5}:	reset:	moving	to	HEAD~1

...

The	above	listing	reflects	our	last	few	actions.	For	example,	the	current	HEAD,
denoted	by	HEAD@{0},	resulted	from	reseting	HEAD	to	HEAD~1.	Four	actions	ago,
the	yellow	page	was	applied	during	our	rebase,	as	shown	in	HEAD@{3}.

The	reflog	is	a	chronological	listing	of	our	history,	without	regard	for	the
repository’s	branch	structure.	This	lets	us	find	dangling	commits	that	would
otherwise	be	lost	from	the	project	history.

Revive	the	Lost	Commit
At	the	beginning	of	each	reflog	entry,	you’ll	find	a	commit	ID	representing	the
HEAD	after	that	action.	Check	out	the	commit	at	HEAD@{2},	which	should	be
where	the	rebase	added	the	green	page	(change	the	ID	below	to	the	ID	from	your
reflog).

git	checkout	002185c

This	puts	us	in	a	detached	HEAD	state,	which	means	our	HEAD	is	no	longer	on	the
tip	of	a	branch.	We’re	actually	in	the	opposite	situation	as	we	were	in	Undoing
Changes	when	we	checked	out	a	commit	before	the	branch	tip.	Now,	we’re
looking	at	a	commit	after	the	tip	of	the	branch,	but	we	still	have	a	detached
HEAD:

Checking	out	a	dangling	commit

To	turn	our	dangling	commit	into	a	full-fledged	branch,	all	we	have	to	do	is
create	one:

git	checkout	-b	green-page

We	now	have	a	branch	that	can	be	merged	back	into	the	project:

Creating	a	branch	from	the	dangling	commit

Creating	a	branch	from	the	dangling	commit

The	above	diagram	makes	it	easy	to	see	that	the	green-page	branch	is	an
extension	of	new-pages,	but	how	would	we	figure	this	out	if	we	weren’t	drawing
out	the	state	of	our	repository	every	step	of	the	way?

Filter	the	Log	History
To	view	the	differences	between	branches,	we	can	use	Git’s	log-filtering	syntax.

git	log	new-pages..green-page

This	will	display	all	commits	contained	in	green-page	that	aren’t	in	the	new-
pages	branch.	The	above	command	tells	us	that	green-page	contains	one	more
snapshot	than	new-pages:	our	dangling	commit	(although,	it’s	not	really
dangling	anymore	since	we	created	a	branch	for	it).

You	can	also	use	this	syntax	to	limit	the	output	of	git	log.	For	example,	to
display	the	last	4	commits	on	the	current	branch,	you	could	use:

git	log	HEAD~4..HEAD

However,	this	is	a	bit	verbose	for	such	a	common	task,	so	Git	developers	added
the	-n	flag	as	an	easier	way	to	limit	output.

git	log	-n	4

The	-n	4	parameter	tells	Git	to	show	only	the	last	four	commits	from	the	current
HEAD,	making	it	the	equivalent	of	the	HEAD~4..HEAD	syntax	shown	above.
Similarly,	-n	3,	-n	2,	and	-n	1	would	display	three,	two,	and	one	commit,
respectively.	This	feature	becomes	very	useful	once	a	repository	grows	beyond
one	screenful	of	history.

Merge	in	the	Revived	Branch

Merge	in	the	Revived	Branch
We’ve	revived	our	lost	commit,	and	now	we’re	ready	to	merge	everything	back
into	the	master	branch.	Before	we	do	the	merge,	let’s	see	exactly	what	we’re
merging:

git	checkout	master

git	log	HEAD..green-page	--stat

The	git	log	HEAD..green-page	command	shows	us	only	those	commits	in
green-page	that	aren’t	in	master	(since	master	is	the	current	branch,	we	can
refer	to	it	as	HEAD).	The	new	--stat	flag	includes	information	about	which	files
have	been	changed	in	each	commit.	For	example,	the	most	recent	commit	tells
us	that	14	lines	were	added	to	the	green.html	file	and	3	lines	were	added	to
index.html:

commit	002185c71e6674915eb75be2afb4ca52c2c7fd1b

Author:	Ryan	<ryan.example@rypress.com>

Date:			Wed	Jan	11	06:49:50	2012	-0600

				Add	green	page

	green.html	|			14	++++++++++++++

	index.html	|				3	+++

	2	files	changed,	17	insertions(+),	0	deletions(-)

If	we	didn’t	already	know	what	was	in	this	new	commit,	the	log	output	would
tell	us	which	files	we	needed	to	look	at.	But,	we	authored	all	of	these	changes,	so
we	can	skip	right	to	the	merge.

git	merge	green-page

The	following	diagram	shows	the	state	of	our	repository	after	the	merge.

Fast-forwarding	master	to	the	green-page	branch

Note	that	the	green-page	branch	already	contains	all	the	history	of	new-pages,
which	is	why	we	merged	the	former	instead	of	the	latter.	If	this	wasn’t	the	case,
Git	would	complain	when	we	try	to	run	the	following	command.

git	branch	-d	new-pages

We	can	go	ahead	and	delete	the	green	page	branch,	too.

git	branch	-d	green-page

Conclusion
This	module	took	an	in-depth	look	at	rebasing,	resetting,	and	the	reflog.	We
learned	how	to	split	old	commits	into	one	or	more	new	commits,	and	how	to
revive	“lost”	commits.	Hopefully,	this	has	given	you	a	better	understanding	of
the	interaction	between	the	working	directory,	the	stage,	branches,	and
committed	snapshots.	We	also	explored	some	new	options	for	displaying	our
commit	history,	which	will	become	an	important	skill	as	our	project	grows.

We	did	a	lot	of	work	with	branch	tips	this	module.	It’s	important	to	realize	that
Git	uses	the	tip	of	a	branch	to	represent	the	entire	branch.	That	is	to	say,	a
branch	is	actually	a	pointer	to	a	single	commit—not	a	container	for	a	series	of
commits.	This	idea	has	been	implicitly	reflected	in	our	diagrams:

Branch	tips,	not	containers

The	history	is	represented	by	the	parent	of	each	commit	(designated	by	arrows),
not	the	branch	itself.	So,	to	request	a	new	branch,	all	Git	has	to	do	is	create	a
reference	to	the	current	commit.	And,	to	add	a	snapshot	to	a	branch,	it	just	has	to
move	the	branch	reference	to	the	new	commit.	An	understanding	of	Git’s	branch
representation	should	make	it	easier	to	wrap	your	head	around	merging,
rebasing,	and	other	kinds	of	branch	manipulation.

We’ll	revisit	Git’s	internal	representation	of	a	repository	in	the	final	module	of
this	tutorial.	But	now,	we’re	finally	ready	to	discuss	multi-user	development,
which	happens	to	rely	entirely	on	Git	branches.

Quick	Reference
git	reflog

Display	the	local,	chronological	history	of	a	repository.

git	reset	--mixed	HEAD~<n>

Move	the	HEAD	backward	<n>	commits,	but	don’t	change	the	working	directory.

git	reset	--hard	HEAD~<n>

Move	the	HEAD	backward	<n>	commits,	and	change	the	working	directory	to
match.

git	log	<since>..<until>

Display	the	commits	reachable	from	<until>	but	not	from	<since>.	These
parameters	can	be	either	commit	ID’s	or	branch	names.

git	log	--stat

Include	extra	information	about	altered	files	in	the	log	output.

Remotes
Simply	put,	a	remote	repository	is	one	that	is	not	your	own.	It	can	be	another
Git	repository	that’s	on	your	company’s	network,	the	internet,	or	even	your	local
filesystem,	but	the	point	is	that	it’s	a	repository	distinct	from	your	my-git-repo
project.

We’ve	already	seen	how	branches	can	streamline	a	workflow	within	a	single
repository,	but	they	also	happen	to	be	Git’s	mechanism	for	sharing	commits
between	repositories.	Remote	branches	act	just	like	the	local	branches	that
we’ve	been	using,	only	they	represent	a	branch	in	someone	else’s	repository.

Accessing	a	feature	branch	from	a	remote	repository

This	means	that	we	can	adapt	our	merging	and	rebasing	skills	to	make	Git	a
fantastic	collaboration	tool.	Over	the	next	few	modules,	we’ll	be	exploring
various	multi-user	workflows	by	pretending	to	be	different	developers	working
on	our	example	website.

For	several	parts	of	this	module,	we’re	going	to	pretend	to	be	Mary,	the	graphic
designer	for	our	website.	Mary’s	actions	are	clearly	denoted	by	including	her
name	in	the	heading	of	each	step.

Download	the	repository	for	this	module

If	you’ve	been	following	along	from	the	previous	module,	you	already	have
everything	you	need.	Otherwise,	download	the	zipped	Git	repository	from	the

http://rypress.com/tutorials/git/media/repo-zips/remotes.zip

everything	you	need.	Otherwise,	download	the	zipped	Git	repository	from	the
above	link,	uncompress	it,	and	you’re	good	to	go.

Clone	the	Repository	(Mary)
First,	Mary	needs	her	own	copy	of	the	repository	to	work	with.	The	Distributed
Workflows	module	will	discuss	network-based	remotes,	but	right	now	we’re	just
going	to	store	them	on	the	local	filesystem.

cd	pathto/my-git-repo

cd	..

git	clone	my-git-repo	marys-repo

cd	marys-repo

The	first	two	lines	navigate	the	command	shell	to	the	directory	above	my-git-
repo.	Make	sure	to	change	pathto/my-git-repo	to	the	actual	path	to	your
repository.	The	git	clone	command	copies	our	repository	into	marys-repo,
which	will	reside	in	the	same	directory	as	my-git-repo.	Then,	we	navigate	to
Mary’s	repository	so	we	can	start	pretending	to	be	Mary.

Run	git	log	to	verify	that	Mary’s	repository	is	in	fact	a	copy	of	our	original
repository.

Configure	The	Repository	(Mary)
First	off,	Mary	needs	to	configure	her	repository	so	that	we	know	who
contributed	what	to	the	project.

git	config	user.name	"Mary"

git	config	user.email	mary.example@rypress.com

You	may	recall	from	the	first	module	that	we	used	a	--global	flag	to	set	the
configuration	for	the	entire	Git	installation.	But	since	Mary’s	repository	is	on	the
local	filesystem,	she	needs	a	local	configuration.

Use	a	text	editor	to	open	up	the	file	called	config	in	the	.git	folder	of	Mary’s
project	(you	may	need	to	enable	hidden	files	to	see	.git).	This	is	where	local
configurations	are	stored,	and	we	see	Mary’s	information	at	the	bottom	of	the
file.	Note	that	this	overrides	the	global	configuration	that	we	set	in	The	Basics.

Start	Mary’s	Day	(Mary)
Today,	Mary	is	going	to	be	working	on	her	bio	page,	which	she	should	develop
in	a	separate	branch:

git	checkout	-b	bio-page

Mary	can	create	and	check	out	branches	just	like	we	did	in	our	copy	of	the
project.	Her	repository	is	a	completely	isolated	development	environment,	and
she	can	do	whatever	she	wants	in	here	without	worrying	about	what’s	going	on
in	my-git-repo.	Just	as	branches	are	an	abstraction	for	the	working	directory,
the	staged	snapshot,	and	a	commit	history,	a	repository	is	an	abstraction	for
branches.

Create	Mary’s	Bio	Page	(Mary)
Let’s	complete	Mary’s	biography	page.	In	marys-repo,	change
about/mary.html	to:

<!DOCTYPE	html>

<html	lang="en">

<head>

		<title>About	Mary</title>

		<link	rel="stylesheet"	href="../style.css"	/>

		<meta	charset="utf-8"	/>

</head>

<body>

		<h1>About	Mary</h1>

		<p>I'm	a	graphic	designer.</p>

		<h2>Interests</h2>

		

				Oil	Painting

				Web	Design

		

		<p>Return	to	about	page</p>

</body>

</html>

Again,	we’re	developing	this	in	a	branch	as	a	best-practice	step:	our	master
branch	is	only	for	stable,	tested	code.	Stage	and	commit	the	snapshot,	then	take	a
look	at	the	result.

git	commit	-a	-m	"Add	bio	page	for	Mary"

git	log	-n	1

The	Author	field	in	the	log	output	should	reflect	the	local	configurations	we
made	for	Mary’s	name	and	email.	Remember	that	the	-n	1	flag	limits	history
output	to	a	single	commit.

Publish	the	Bio	Page	(Mary)
Now,	we	can	publish	the	bio	page	by	merging	into	the	master	branch.

git	checkout	master

git	merge	bio-page

Of	course,	this	results	in	a	fast-forward	merge.	We’ll	eventually	pull	this	update
into	my-git-repo	once	we	stop	pretending	to	be	Mary.	Here’s	what	Mary’s
repository	looks	like	compared	to	ours:

Merging	Mary’s	bio-page	branch	with	her	master

Notice	that	both	repositories	have	normal,	local	branches—we	haven’t	had	any
interaction	between	the	two	repositories,	so	we	don’t	see	any	remote	branches
yet.	Before	we	switch	back	to	my-git-repo,	let’s	examine	Mary’s	remote
connections.

View	Remote	Repositories	(Mary)
Mary	can	list	the	connections	she	has	to	other	repositories	using	the	following
command.

git	remote

Apparently,	she	has	a	remote	called	origin.	When	you	clone	a	repository,	Git
automatically	adds	an	origin	remote	pointing	to	the	original	repository,	under
the	assumption	that	you’ll	probably	want	to	interact	with	it	down	the	road.	We
can	request	a	little	bit	more	information	with	the	-v	(verbose)	flag:

git	remote	-v

This	shows	the	full	path	to	our	original	repository,	verifying	that	origin	is	a
remote	connection	to	my-git-repo.	The	same	path	is	designated	as	a	“fetch”	and
a	“push”	location.	We’ll	see	what	these	mean	in	a	moment.

Return	to	Your	Repository	(You)
Ok,	we’re	done	being	Mary,	and	we	can	return	to	our	own	repository.

cd	../my-git-repo

Notice	that	Mary’s	bio	page	is	still	empty.	It’s	very	important	to	understand	that
this	repository	and	Mary’s	repository	are	completely	separate.	While	she	was
altering	her	bio	page,	we	could	have	been	doing	all	sorts	of	other	things	in	my-
git-repo.	We	could	have	even	changed	her	bio	page,	which	would	result	in	a
merge	conflict	when	we	try	to	pull	her	changes	in.

Add	Mary	as	a	Remote	(You)
Before	we	can	get	ahold	of	Mary’s	bio	page,	we	need	access	to	her	repository.
Let’s	look	at	our	current	list	of	remotes:

git	remote

We	don’t	have	any	(origin	was	never	created	because	we	didn’t	clone	from
anywhere).	So,	let’s	add	Mary	as	a	remote	repository.

git	remote	add	mary	../marys-repo

git	remote	-v

We	can	now	use	mary	to	refer	to	Mary’s	repository,	which	is	located	at
../marys-repo.	The	git	remote	add	command	is	used	to	bookmark	another
Git	repository	for	easy	access,	and	our	connections	can	be	seen	in	the	figure
below.

Connections	to	remote	repositories

Now	that	our	remote	repositories	are	setup,	we’ll	spend	the	rest	of	the	module
discussing	remote	branches.

Fetch	Mary’s	Branches	(You)
As	noted	earlier,	we	can	use	remote	branches	to	access	snapshots	from	another
repository.	Let’s	take	a	look	at	our	current	remote	branches	with	the	-r	flag:

git	branch	-r

Again,	we	don’t	have	any.	To	populate	our	remote	branch	listing,	we	need	to
fetch	the	branches	from	Mary’s	repository:

git	fetch	mary

git	branch	-r

This	will	go	to	the	“fetch”	location	shown	in	git	remote	-v	and	download	all
of	the	branches	it	finds	there	into	our	repository.	The	resulting	branches	are
shown	below.

mary/bio-page

mary/master

Remote	branches	are	always	listed	in	the	form	<remote‑name>/<branch‑name>
so	that	they	will	never	be	mistaken	for	local	branches.	The	above	listing	reflects
the	state	of	Mary’s	repository	at	the	time	of	the	fetch,	but	they	will	not	be

automatically	updated	if	Mary	continues	developing	any	of	her	branches.

That	is	to	say,	our	remote	branches	are	not	direct	links	into	Mary’s	repository—
they	are	read-only	copies	of	her	branches,	stored	in	our	own	repository.	This
means	that	we	would	have	to	do	another	fetch	to	access	new	updates.

Mary’s	remote	branches	in	our	repository

The	above	figure	shows	the	state	of	our	repository.	We	have	access	to	Mary’s
snapshots	(represented	as	squares)	and	her	branches,	even	though	we	don’t	have
a	real-time	connection	to	Mary’s	repository.

Check	Out	a	Remote	Branch
Let’s	check	out	a	remote	branch	to	review	Mary’s	changes.

git	checkout	mary/master

This	puts	us	in	a	detached	HEAD	state,	just	like	we	were	in	when	we	checked	out
a	dangling	commit.	This	shouldn’t	be	that	surprising,	considering	that	our
remote	branches	are	copies	of	Mary’s	branches.	Checking	out	a	remote	branch
takes	our	HEAD	off	the	tip	of	a	local	branch,	illustrated	by	the	following	diagram.

Checking	out	Mary’s	master	branch

We	can’t	continue	developing	if	we’re	not	on	a	local	branch.	To	build	on
mary/master	we	either	need	to	merge	it	into	our	own	local	master	or	create
another	branch.	We	did	the	latter	in	Branches,	Part	I	to	build	on	an	old	commit
and	in	the	previous	module	to	revive	a	“lost”	commit,	but	right	now	we’re	just
looking	at	what	Mary	did,	so	the	detached	HEAD	state	doesn’t	really	affect	us.

Find	Mary’s	Changes
We	can	use	the	same	log-filtering	syntax	from	the	previous	module	to	view
Mary’s	changes.

git	log	master..mary/master	--stat

This	shows	us	what	Mary	has	added	to	her	master	branch,	but	it’s	also	a	good
idea	to	see	if	we’ve	added	any	new	changes	that	aren’t	in	Mary’s	repository:

git	log	mary/master..master	--stat

This	won’t	output	anything,	since	we	haven’t	altered	our	database	since	Mary
cloned	it.	In	other	words,	our	history	hasn’t	diverged—we’re	just	behind	by	a
commit.

Merge	Mary’s	Changes
Let’s	approve	Mary’s	changes	and	integrate	them	into	our	own	master	branch.

git	checkout	master

git	merge	mary/master

Even	though	mary/master	is	a	remote	branch,	this	still	results	in	a	fast-forward
merge	because	there	is	a	linear	path	from	our	master	to	the	tip	of	mary/master:

Before	merging	Mary’s	master	branch	into	our	own

After	the	merge,	the	snapshots	from	Mary’s	remote	branch	become	a	part	of	our
local	master	branch.	As	a	result,	our	master	is	now	synchronized	with	Mary’s:

After	merging	Mary’s	master	branch	into	our	own

Notice	that	we	only	interacted	with	Mary’s	master	branch,	even	though	we	had
access	to	her	bio-page.	If	we	hadn’t	been	pretending	to	be	Mary,	we	wouldn’t
have	known	what	this	feature	branch	was	for	or	if	it	was	ready	to	be	merged.
But,	since	we’ve	designated	master	as	a	stable	branch	for	the	project,	it	was	safe
to	integrate	those	updates	(assuming	Mary	was	also	aware	of	this	convention).

Push	a	Dummy	Branch

Push	a	Dummy	Branch
To	complement	our	git	fetch	command,	we’ll	take	a	brief	look	at	pushing.
Fetching	and	pushing	are	almost	opposites,	in	that	fetching	imports	branches,
while	pushing	exports	branches	to	another	repository.	Let’s	take	a	look:

git	branch	dummy

git	push	mary	dummy

This	creates	a	new	branch	called	dummy	and	sends	it	to	Mary.	Switch	into	Mary’s
repository	to	see	what	we	did:

cd	../marys-repo

git	branch

You	should	find	a	new	dummy	branch	in	her	local	branch	listing.	I	said	that	git
fetch	and	git	push	are	almost	opposites	because	pushing	creates	a	new	local
branch,	while	fetching	imports	commits	into	remote	branches.

Now,	put	yourself	in	Mary’s	shoes.	She	was	developing	in	her	own	repository
when,	all	of	a	sudden,	a	new	dummy	branch	appeared	out	of	nowhere.	Obviously,
pushing	branches	into	other	people’s	repositories	can	make	for	a	chaotic
workflow.	So,	as	a	general	rule,	you	should	never	push	into	another
developer’s	repository.	But	then,	why	does	git	push	even	exist?

Over	the	next	few	modules,	we’ll	see	that	pushing	is	a	necessary	tool	for
maintaining	public	repositories.	Until	then,	just	remember	to	never,	ever	push
into	one	of	your	friend’s	repositories.	Let’s	get	rid	of	these	dummy	branches	and
return	to	our	repository.

git	branch	-d	dummy

cd	../my-git-repo

git	branch	-d	dummy

Push	a	New	Tag

Push	a	New	Tag
An	important	property	of	git	push	is	that	it	does	not	automatically	push	tags
associated	with	a	particular	branch.	Let’s	examine	this	by	creating	a	new	tag.

git	tag	-a	v2.0	-m	"An	even	stabler	version	of	the	website"

We	now	have	a	v2.0	tag	in	my-git-repo,	which	we	can	see	by	running	the	git
tag	command.	Now,	let’s	try	pushing	the	branch	to	Mary’s	repository.

git	push	mary	master

Git	will	say	her	master	branch	is	already	up-to-date,	and	her	repository	will
remain	unchanged.	Instead	of	pushing	the	branch	that	contains	the	tag,	Git
requires	us	to	manually	push	the	tag	itself:

git	push	mary	v2.0

You	should	now	be	able	to	see	the	v2.0	tag	in	Mary’s	repository	with	a	quick
git	tag.	It’s	very	easy	to	forget	to	push	new	tags,	so	if	it	seems	like	your	project
has	lost	a	tag	or	two,	it’s	most	likely	because	you	didn’t	to	push	them	to	the
remote	repository.

Conclusion
In	this	module,	we	learned	how	remote	branches	can	be	used	to	access	content	in
someone	else’s	repository.	The	remotes	listed	in	git	remote	are	merely
bookmarks	for	a	full	path	to	another	repository.	We	used	a	local	path,	but	as
we’ll	soon	see,	Git	can	use	the	SSH	protocol	to	access	repositories	on	another
computer.

The	convention	of	master	as	a	stable	branch	allowed	us	to	pull	changes	without
consulting	Mary,	but	this	doesn’t	necessarily	have	to	be	the	case.	When
implementing	your	own	workflow,	Git	offers	you	a	lot	of	flexibility	about	when

and	where	you	should	pull	from	your	team	members.	As	long	as	you	clearly
define	your	project	conventions,	you	can	designate	special	uses	or	privileges	to
any	branch.

That	said,	it’s	important	to	note	that	remotes	are	for	people,	whereas	branches
are	for	topics.	Do	not	create	separate	branches	for	each	of	your	developers—give
them	separate	repositories	and	bookmark	them	with	git	remote	add.	Branches
should	always	be	for	project	development,	not	user	management.

Now	that	we	know	how	Git	shares	information	between	repositories,	we	can	add
some	more	structure	to	our	multi-user	development	environment.	The	next
module	will	show	you	how	to	set	up	and	access	a	shared	central	repository.

Quick	Reference
git	clone	<remote-path>

Create	a	copy	of	a	remote	Git	repository.

git	remote

List	remote	repositories.

git	remote	add	<remote-name>	<remote-path>

Add	a	remote	repository.

git	fetch	<remote-name>

Download	remote	branch	information,	but	do	not	merge	anything.

git	merge	<remote-name>/<branch-name>

Merge	a	remote	branch	into	the	checked-out	branch.

git	branch	-r

List	remote	branches.

git	push	<remote-name>	<branch-name>

Push	a	local	branch	to	another	repository.

git	push	<remote-name>	<tag-name>

Push	a	tag	to	another	repository.

Centralized	Workflows
In	the	previous	module,	we	shared	information	directly	between	two	developers’
repositories:	my-git-repo	and	marys-repo.	This	works	for	very	small	teams
developing	simple	programs,	but	larger	projects	call	for	a	more	structured
environment.	This	module	introduces	one	such	environment:	the	centralized
workflow.

We’ll	use	a	third	Git	repository	to	act	as	a	central	communication	hub	between
us	and	Mary.	Instead	of	pulling	changes	into	my-git-repo	from	marys-repo	and
vice	versa,	we’ll	push	to	and	fetch	from	a	dedicated	storage	repository.	After	this
module,	our	workflow	will	look	like	the	following.

The	centralized	workflow

Typically,	you	would	store	the	central	repository	on	a	server	to	allow	internet-
based	collaboration.	Unfortunately,	server	configuration	can	vary	among	hosting
providers,	making	it	hard	to	write	universal	step-by-step	instructions.	So,	we’ll
continue	exploring	remote	repositories	using	our	local	filesystem,	just	like	in	the
previous	module.

If	you	have	access	to	a	server,	feel	free	to	use	it	to	host	the	central	repository	that
we’re	about	to	create.	You’ll	have	to	provide	SSH	paths	to	your	server-based

we’re	about	to	create.	You’ll	have	to	provide	SSH	paths	to	your	server-based
repository	in	place	of	the	paths	provided	below,	but	other	than	that,	you	can
follow	this	module’s	instructions	as	you	find	them.	For	everyone	else,	our
network-based	Git	experience	will	begin	in	the	next	module.

Download	the	repositories	for	this	module

If	you’ve	been	following	along	from	the	previous	module,	you	already	have
everything	you	need.	Otherwise,	download	the	zipped	Git	repositories	from	the
above	link,	uncompress	them,	and	you’re	good	to	go.

Create	a	Bare	Repository	(Central)
First,	let’s	create	our	central	“communication	hub.”	Again,	make	sure	to	change
pathto/my-git-repo	to	the	actual	path	to	your	repository.	If	you’ve	decided	to
host	the	central	repository	on	your	server,	you	should	SSH	into	it	and	run	the	git
init	command	wherever	you’d	like	to	store	the	repository.

cd	pathto/my-git-repo

cd	..

git	init	--bare	central-repo.git

As	in	the	very	first	module,	git	init	creates	a	new	repository.	But	this	time,	we
used	the	--bare	flag	to	tell	Git	that	we	don’t	want	a	working	directory.	This	will
prevent	us	from	developing	in	the	central	repository,	which	eliminates	the
possibility	of	messing	up	another	user’s	environment	with	git	push.	A	central
repository	is	only	supposed	to	act	as	a	storage	facility—not	a	development
environment.

If	you	examine	the	contents	of	the	resulting	central-repo.git	folder,	you’ll
notice	that	it	contains	the	exact	same	files	as	the	.git	folder	in	our	my-git-repo
project.	Git	has	literally	gotten	rid	of	our	working	directory.	The	conventional
.git	extension	in	the	directory	name	is	a	way	to	convey	this	property.

Update	Remotes	(Mary	and	You)

http://rypress.com/tutorials/git/media/repo-zips/centralized-workflows.zip

Update	Remotes	(Mary	and	You)
We’ve	successfully	set	up	a	central	repository	that	can	be	used	to	share	updates
between	us,	Mary,	and	any	other	developers.	Next,	we	should	add	it	as	a	remote
to	both	marys-repo	and	my-git-repo.

cd	marys-repo

git	remote	rm	origin

git	remote	add	origin	../central-repo.git

Now	for	our	repository:

cd	../my-git-repo

git	remote	add	origin	../central-repo.git

git	remote	rm	mary

Note	that	we	deleted	the	remote	connections	between	Mary	and	our	my-git-
repo	folder	with	git	remote	rm.	For	the	rest	of	this	module,	we’ll	only	use	the
central	repository	to	share	updates.

If	you	decided	to	host	the	central	repository	on	a	server,	you’ll	need	to	change
the	../central-repo.git	path	to:	ssh://user@example.compathto/central-
repo.git,	substituting	your	SSH	username	and	server	location	for
user@example.com	and	the	central	repository’s	location	for	path/to/central-
repo.git.

Push	the	Master	Branch	(You)
We	didn’t	clone	the	central	repository—we	just	initialized	it	as	a	bare	repository.
This	means	it	doesn’t	have	any	of	our	project	history	yet.	We	can	fix	that	using
the	git	push	command	introduced	in	the	last	module.

git	push	origin	master

Our	central	repository	now	contains	our	entire	master	branch,	which	we	can
double-check	with	the	following.

cd	../central-repo.git

git	log

This	should	output	the	familiar	history	listing	of	the	master	branch.

Recall	that	git	push	creates	local	branches	in	the	destination	repository.	We
said	it	was	dangerous	to	push	to	a	friend’s	repository,	as	they	probably	wouldn’t
appreciate	new	branches	appearing	at	random.	However,	it’s	safe	to	create	local
branches	in	central-repo.git	because	it	has	no	working	directory,	which
means	it’s	impossible	to	disturb	anyone’s	development.

Add	News	Update	(You)
Let’s	see	our	new	centralized	collaboration	workflow	in	action	by	committing	a
few	more	snapshots.

cd	../my-git-repo

git	checkout	-b	news-item

Create	a	file	called	news-3.html	in	my-git-repo	and	add	the	following	HTML.

<!DOCTYPE	html>

<html	lang="en">

<head>

		<title>Middle	East's	Silent	Beast</title>

		<link	rel="stylesheet"	href="style.css"	/>

		<meta	charset="utf-8"	/>

</head>

<body>

		<h1	style="color:	#D90">Middle	East's	Silent	Beast</h1>

		<p>Late	yesterday	evening,	the	Middle	East's	largest

		design	house—until	now,	silent	on	the	West's	colorful

		disagreement—announced	the	adoption	of

		Yellow	as	this	year's

		color	of	choice.</p>

				

		<p>Return	to	home	page</p>

</body>

</html>

Next,	add	a	link	to	the	“News”	section	of	index.html	so	that	it	looks	like:

<h2	style="color:	#C00">News</h2>

		Blue	Is	The	New	Hue

		Our	New	Rainbow

		A	Red	Rebellion

		Middle	East's	Silent	Beast

Stage	and	commit	a	snapshot.

git	add	news-3.html	index.html

git	status

git	commit	-m	"Add	3rd	news	item"

Publish	the	News	Item	(You)
Previously,	“publishing”	meant	merging	with	the	local	master	branch.	But	since
we’re	only	interacting	with	the	central	repository,	our	master	branch	is	private
again.	There’s	no	chance	of	Mary	pulling	content	directly	from	our	repository.

Instead,	everyone	accesses	updates	through	the	public	master	branch,	so

“publishing”	means	pushing	to	the	central	repository.

git	checkout	master

git	merge	news-item

git	branch	-d	news-item

git	push	origin	master

After	merging	into	master	as	we	normally	would,	git	push	updates	the	central
repository’s	master	branch	to	reflect	our	local	master.	From	our	perspective,	the
push	can	be	visualized	as	the	following:

Pushing	master	to	the	central	repository

Note	that	this	accomplishes	the	exact	same	thing	as	going	into	the	central
repository	and	doing	a	fetch/fast-forward	merge,	except	git	push	allows	us	to
do	everything	from	inside	my-git-repo.	We’ll	see	some	other	convenient
features	of	this	command	later	in	the	module.

Update	CSS	Styles	(Mary)

Update	CSS	Styles	(Mary)
Next,	let’s	pretend	to	be	Mary	again	and	add	some	CSS	formatting	(she	is	our
graphic	designer,	after	all).

cd	../marys-repo

git	checkout	-b	css-edits

Add	the	following	to	the	end	of	style.css:

h1	{

		font-size:	32px;

}

h2	{

		font-size:	24px;

}

a:link,	a:visited	{

		color:	#03C;

}

And,	stage	and	commit	a	snapshot.

git	commit	-a	-m	"Add	CSS	styles	for	headings	and	links"

Update	Another	CSS	Style	(Mary)
Oops,	Mary	forgot	to	add	some	formatting.	Append	the	h3	styling	to	style.css:

h3	{

		font-size:	18px;

		margin-left:	20px;

}

And	of	course,	stage	and	commit	the	updates.

git	commit	-a	-m	"Add	CSS	styles	for	3rd	level	headings"

Clean	Up	Before	Publishing	(Mary)
Before	Mary	considers	pushing	her	updates	to	the	central	repository,	she	needs
to	make	sure	she	has	a	clean	history.	This	must	be	done	by	Mary,	because	it’s
near-impossible	to	change	history	after	it	has	been	made	public.

git	rebase	-i	master

This	highlights	another	benefit	of	using	isolated	branches	to	develop
independent	features.	Mary	doesn’t	need	to	go	back	and	figure	out	what	changes
need	to	be	rebased,	since	they	all	reside	in	her	current	branch.	Change	the	rebase
configuration	to:

pick	681bd1c	Add	CSS	styles	for	headings	and	links

squash	eabac68	Add	CSS	styles	for	3rd	level	headings

When	Git	stops	to	ask	for	the	combined	commit	message,	just	use	the	first
commit’s	message:

Add	CSS	styles	for	headings	and	links

Consider	what	would	have	happened	had	Mary	rebased	after	pushing	to	the
central	repository.	She	would	be	re-writing	commits	that	other	developers	may
have	already	pulled	into	their	project.	To	Git,	Mary’s	re-written	commits	look
like	entirely	new	commits	(since	they	have	different	ID’s).	This	situation	is
shown	below.

Squashing	a	public	commit

The	commits	labeled	1	and	2	are	the	public	commits	that	Mary	would	be
rebasing.	Afterwards,	the	public	history	is	still	the	exact	same	as	Mary’s	original
history,	but	now	her	local	master	branch	has	diverged	from	origin/master—
even	though	they	represent	the	same	snapshot.

So,	to	publish	her	rebased	master	branch	to	the	central	repository,	Mary	would
have	to	merge	with	origin/master.	This	cannot	be	a	fast-forward	merge,	and
the	resulting	merge	commit	is	likely	to	confuse	her	collaborators	and	disrupt
their	workflow.

This	brings	us	to	the	most	important	rule	to	remember	while	rebasing:	Never,
ever	rebase	commits	that	have	been	pushed	to	a	shared	repository.

If	you	need	to	change	a	public	commit,	use	the	git	revert	command	that	we
discussed	in	Undoing	Changes.	This	creates	a	new	commit	with	the	required

modifications	instead	of	re-writing	old	snapshots.

Publish	CSS	Changes	(Mary)
Now	that	her	history	is	cleaned	up,	Mary	can	publish	the	changes.

git	checkout	master

git	merge	css-edits

git	branch	-d	css-edits

She	shouldn’t	push	the	css-edits	branch	to	the	server,	since	it’s	no	longer
under	development,	and	other	collaborators	wouldn’t	know	what	it	contains.
However,	if	we	had	all	decided	to	develop	the	CSS	edits	together	and	wanted	an
isolated	environment	to	do	so,	it	would	make	sense	to	publish	it	as	an
independent	branch.

Mary	still	needs	to	push	the	changes	to	the	central	repository.	But	first,	let’s	take
a	look	at	the	state	of	everyone’s	project.

Before	publishing	Mary’s	CSS	changes

You	might	be	wondering	how	Mary	can	push	her	local	master	up	to	the	central
repository,	since	it	has	progressed	since	Mary	last	fetched	from	it.	This	is	a
common	situation	when	many	developers	are	working	on	a	project
simultaneously.	Let’s	see	how	Git	handles	it:

git	push	origin	master

This	will	output	a	verbose	rejection	message.	It	seems	that	Git	won’t	let	anyone
push	to	a	remote	server	if	it	doesn’t	result	in	a	fast-forward	merge.	This	prevents
us	from	losing	the	Add	3rd	news	item	commit	that	would	need	to	be
overwritten	for	origin/master	to	match	mary/master.

Pull	in	Changes	(Mary)
Mary	can	solve	this	problem	by	pulling	in	the	central	changes	before	trying	to
push	her	CSS	changes.	First,	she	needs	the	most	up-to-date	version	of	the
origin/master	branch.

git	fetch	origin

Remember	that	Mary	can	see	what’s	in	origin/master	and	not	in	the	local
master	using	the	..	syntax:

git	log	master..origin/master

And	she	can	also	see	what’s	in	her	master	that’s	not	in	origin/master:

git	log	origin/master..master

Since	both	of	these	output	a	commit,	we	can	tell	that	Mary’s	history	diverged.
This	should	also	be	clear	from	the	diagram	below,	which	shows	the	updated

origin/master	branch.

Fetching	the	central	repository’s	master	branch

Mary	is	now	in	the	familiar	position	of	having	to	pull	in	changes	from	another
branch.	She	can	either	merge,	which	cannot	be	fast-forwarded,	or	she	can	rebase
for	a	linear	history.

Typically,	you’ll	want	to	rebase	your	changes	on	top	of	those	found	in	your
central	repository.	This	is	the	equivalent	of	saying,	“I	want	to	add	my	changes	to
what	everyone	else	has	already	done.”	As	previously	discussed,	rebasing	also
eliminates	superfluous	merge	commits.	For	these	reasons,	Mary	will	opt	for	a
rebase.

git	rebase	origin/master

git	push	origin	master

After	the	rebase,	Mary’s	master	branch	contains	everything	from	the	central
repository,	so	she	can	do	a	fast-forward	push	to	publish	her	changes.

Updating	the	central	repository’s	master

Pull	in	Changes	(You)
Finally,	we’ll	switch	back	to	our	repository	and	pull	in	Mary’s	CSS	formatting.

cd	../my-git-repo

git	fetch	origin

git	log	master..origin/master	--stat

git	log	origin/master..master	--stat

Of	course,	the	second	log	command	won’t	output	anything,	since	we	haven’t
added	any	new	commits	while	Mary	was	adding	her	CSS	edits.	It’s	usually	a
good	idea	to	check	this	before	trying	to	merge	in	a	remote	branch.	Otherwise,
you	might	end	up	with	some	extra	merge	commits	when	you	thought	you	were
fast-forwarding	your	branch.

git	merge	origin/master

Our	repository	is	now	synchronized	with	the	central	repository.	Note	that	Mary
may	have	moved	on	and	added	some	new	content	that	we	don’t	know	about,	but
it	doesn’t	matter.	The	only	changes	we	need	to	know	about	are	those	in
central-repo.git.	While	this	doesn’t	make	a	huge	difference	when	we’re
working	with	just	one	other	developer,	imagine	having	to	keep	track	of	a	dozen
different	developers’	repositories	in	real-time.	This	kind	of	chaos	is	precisely	the
problem	a	centralized	collaboration	workflow	is	designed	to	solve:

The	centralized	workflow	with	many	developers

The	presence	of	a	central	communication	hub	condenses	all	this	development
into	a	single	repository	and	ensures	that	no	one	overwrites	another’s	content,	as
we	discovered	while	trying	to	push	Mary’s	CSS	updates.

Conclusion
In	this	module,	we	introduced	another	remote	repository	to	serve	as	the	central
storage	facility	for	our	project.	We	also	discovered	bare	repositories,	which	are
just	like	ordinary	repositories—minus	the	working	directory.	Bare	repositories
provide	a	“safe”	location	to	push	branches	to,	as	long	as	you	remember	not	to
rebase	the	commits	that	it	already	contains.

rebase	the	commits	that	it	already	contains.

We	hosted	the	central	repository	on	our	local	filesystem,	right	next	to	both	ours
and	Mary’s	projects.	However,	most	real-world	central	repositories	reside	on	a
remote	server	with	internet	access.	This	lets	any	developer	fetch	from	or	push	to
the	repository	over	the	internet,	making	Git	a	very	powerful	multi-user
development	platform.	Having	the	central	repository	on	a	remote	server	is	also
an	affordable,	convenient	way	to	back	up	a	project.

Next	up,	we’ll	configure	a	network-based	repository	using	a	service	called
GitHub.	In	addition	to	introducing	network	access	for	Git	repositories,	this	will
open	the	door	for	another	collaboration	standard:	the	integrator	workflow.

Quick	Reference
git	init	--bare	<repository-name>

Create	a	Git	repository,	but	omit	the	working	directory.

git	remote	rm	<remote-name>

Remove	the	specified	remote	from	your	bookmarked	connections.

Distributed	Workflows
Now	that	we	know	how	to	share	information	via	a	centralized	workflow,	we	can
appreciate	some	of	the	drawbacks	of	this	collaboration	model.	While	it	may	be
convenient,	allowing	everyone	to	push	to	an	“official”	repository	raises	some
legitimate	security	concerns.	It	means	that	for	anyone	to	contribute	content,	they
need	access	to	the	entire	project.

This	is	fine	if	you’re	only	interacting	with	a	small	team,	but	imagine	a	scenario
where	you’re	working	on	an	open-source	software	project	and	a	stranger	found	a
bug,	fixed	it,	and	wants	to	incorporate	the	update	into	the	main	project.	You
probably	don’t	want	to	give	them	push-access	to	your	central	repository,	since
they	could	start	pushing	all	sorts	of	random	snapshots,	and	you	would	effectively
lose	control	of	the	project.

But,	what	you	can	do	is	tell	the	contributor	to	push	the	changes	to	their	own
public	repository.	Then,	you	can	pull	their	bug	fix	into	your	private	repository	to
ensure	it	doesn’t	contain	any	undeclared	code.	If	you	approve	their
contributions,	all	you	have	to	do	is	merge	them	into	a	local	branch	and	push	it	to
the	main	repository,	just	like	we	did	in	the	previous	module.	You’ve	become	an
integrator,	in	addition	to	an	ordinary	developer:

The	integrator	workflow

In	this	module,	we’ll	experience	all	of	this	first-hand	by	creating	a	free	public
repository	on	Bitbucket.org	and	incorporating	a	contribution	from	an	anonymous
developer	named	John.	Bitbucket	is	a	DVCS	hosting	provider	that	makes	it	very
easy	to	set	up	a	Git	repository	and	start	collaborating	with	a	team	of	developers.

Download	the	repositories	for	this	module

If	you’ve	been	following	along	from	the	previous	module,	you	already	have
everything	you	need.	Otherwise,	download	the	zipped	Git	repositories	from	the
above	link,	uncompress	them,	and	you’re	good	to	go.

Create	a	Bitbucket	Account
The	first	part	of	this	module	will	walk	you	through	setting	up	a	Bitbucket
account.	Navigate	your	web	browser	to	Bitbucket.org	and	sign	up	for	a	free
account.

http://bitbucket.org
http://rypress.com/tutorials/git/media/repo-zips/distributed-workflows.zip
http://bitbucket.org

The	Bitbucket	logo

You	can	choose	any	username	for	your	account,	but	the	email	address	should
match	the	one	you	assigned	to	your	Git	installation	with	git	config	in	The
Basics.	If	you	need	to	change	your	email,	you	can	run	another	git	config	--
global	user.email	you@example.com	command.

Create	a	Public	Repository	(You)
To	create	our	first	networked	Git	repository,	log	into	your	Bitbucket	account,
and	navigate	to	Repositories	>	Create	repository.	Use	my-git-repo	as	the
Repository	Name,	and	anything	you	like	for	the	Description	field.	Since	this	is
just	an	example	project,	go	ahead	and	uncheck	the	This	is	a	private	repository
field.	Select	HTML/CSS	for	the	Language	field,	then	go	ahead	and	click	Create
repository.

Bitbucket’s	new	repository	form

Essentially,	we	just	ran	git	init	--bare	on	a	Bitbucket	server.	We	can	now
push	to	and	fetch	from	this	repository	as	we	did	with	central-repo.git	in	the
previous	module.

After	initialization,	Bitbucket	offers	some	helpful	instructions,	but	don’t	follow
them	just	yet—we’ll	walk	through	importing	an	existing	repository	in	the	next
section.

Bitbucket’s	setup	instructions

Push	to	the	Public	Repository	(You)
Before	populating	this	new	repository	with	our	existing	my-git-repo	project,	we
first	need	to	point	our	origin	remote	to	the	Bitbucket	repository.	Be	sure	to
change	the	<username>	portion	to	your	actual	Bitbucket	username.

cd	pathto/my-git-repo

git	remote	rm	origin

git	remote	add	origin	https://<username>@bitbucket.org/<username>/my-git-repo.git

The	utility	of	remotes	should	be	more	apparent	than	in	previous	modules,	as
typing	the	full	path	to	this	repository	every	time	we	needed	to	interact	with	it
would	be	rather	tedious.

To	populate	the	remote	repository	with	our	existing	code,	we	can	use	the	same
push	mechanism	as	with	a	centralized	workflow.	When	prompted	for	a
password,	use	the	one	that	you	signed	up	with.

git	push	origin	master

Browse	the	Public	Repository	(You)

Browse	the	Public	Repository	(You)
We	should	now	be	able	to	see	our	project	on	the	Bitbucket	site.	The	Source	tab
displays	all	of	the	files	in	the	project,	and	the	Commits	tab	contains	the	entire
commit	history.	Note	that	the	branch	structure	of	the	repository	is	also	visualized
to	the	left	of	each	commit.

Our	history	in	Bitbucket’s	Commit	tab

This	repository	now	serves	as	the	“official”	copy	of	our	example	website.	We’ll
tell	everyone	else	to	download	from	this	repository,	and	we’ll	push	all	the
changes	from	our	local	my-git-repo	to	it.	However,	it’s	important	to	note	that
this	“official”	status	is	merely	a	convention.	As	the	master	branch	is	just	another
branch,	our	Bitbucket	repository	is	just	another	repository	according	to	Git.

Having	both	a	public	and	a	private	repository	for	each	developer	makes	it	easy	to
incorporate	contributions	from	third-parties,	even	if	you’ve	never	met	them
before.

Clone	the	Repository	(John)
Next,	we’re	going	to	pretend	to	be	John,	a	third-party	contributor	to	our	website.
John	noticed	that	we	didn’t	have	a	pink	page	and,	being	the	friendly	developer
that	he	is,	wants	to	create	one	for	us.	We’d	like	to	let	him	contribute,	but	we
don’t	want	to	give	him	push-access	to	our	entire	repository—this	would	allow
him	to	re-write	or	even	delete	all	of	our	hard	work.

him	to	re-write	or	even	delete	all	of	our	hard	work.

Fortunately,	John	knows	how	to	exploit	Bitbucket’s	collaboration	potential.
He’ll	start	by	cloning	a	copy	of	our	public	repository:

cd	pathto/my-git-repo

cd	..

git	clone	http://bitbucket.org/<username>/my-git-repo.git	johns-repo

cd	johns-repo

You	should	now	have	another	copy	of	our	repository	called	johns-repo	in	the
same	folder	as	my-git-repo.	This	is	John’s	private	repository—a	completely
isolated	environment	where	he	can	safely	develop	the	pink	page.	Let’s	quickly
configure	his	name	and	email:

git	config	user.name	"John"

git	config	user.email	john.example@rypress.com

Add	the	Pink	Page	(John)
Of	course,	John	should	be	developing	his	contributions	in	a	dedicated	feature
branch.

git	checkout	-b	pink-page

In	addition	to	being	a	best	practice,	this	makes	it	easy	for	the	integrator	to	see
what	commits	to	include.	When	John’s	done,	he’ll	tell	us	where	to	find	his
repository	and	what	branch	the	new	feature	resides	in.	Then,	we’ll	be	able	merge
his	content	with	minimal	effort.

Create	the	file	pink.html	and	add	the	following	code:

<!DOCTYPE	html>

<html	lang="en">

<head>

		<title>The	Pink	Page</title>

		<link	rel="stylesheet"	href="style.css"	/>

		<meta	charset="utf-8"	/>

</head>

<body>

		<h1	style="color:	#F0F">The	Pink	Page</h1>

		<p>Pink	is	girly,

		flirty	and	fun!</p>

		<p>Return	to	home	page</p>

</body>

</html>

Add	the	pink	page	to	the	“Navigation”	section	in	index.html:

<li	style="color:	#F0F">

		The	Pink	Page

Then,	stage	and	commit	the	snapshot	as	normal.

git	add	pink.html	index.html

git	status

git	commit	-m	"Add	pink	page"

Publish	the	Pink	Page	(John)
Now,	John	needs	to	publish	his	contributions	to	a	public	repository.	Remember
that	we	don’t	want	him	to	push	to	our	public	repository,	which	is	stored	in	his
origin	remote.	In	fact,	he	can’t	push	to	origin	for	reasons	we’ll	discuss	in	a
moment.

Instead,	he’ll	create	his	own	Bitbucket	repository	that	we	can	pull	contributions
from.	In	the	real	world,	John	would	have	his	own	Bitbucket	account,	but	for
convenience,	we’ll	just	store	his	public	repository	under	our	existing	account.
Once	again,	navigate	to	your	Bitbucket	home	page	and	click
Repositories	>	Create	repository	to	create	John’s	public	repository.	For	the
Name	field,	use	johns-repo.

John’s	new	repository	form

Back	in	John’s	private	repository,	we’ll	need	to	add	this	as	a	remote:

git	remote	add	john-public	https://<username>@bitbucket.org/<username>/johns-repo.git

This	is	where	John	will	publish	the	pink	page	for	us	to	access.	Since	he’s
pushing	with	HTTPS,	he’ll	need	to	enter	the	password	for	his	Bitbucket	account
(which	is	actually	the	password	for	your	account).

git	push	john-public	pink-page

All	John	needs	to	do	now	is	tell	us	the	name	of	the	feature	branch	and	send	us	a
link	to	his	repository,	which	will	be:

http://bitbucket.org/<username>/johns-repo.git

Note	that	John	used	a	different	path	for	pushing	to	his	public	repository	than	the
one	he	gave	us	for	fetching	from	it.	The	most	important	distinction	is	the
transport	protocol:	the	former	used	https://	while	the	latter	used	http://.
Accessing	a	repository	over	HTTPS	(or	SSH)	lets	you	fetch	or	push,	but	as	we
saw,	requires	a	password.	This	prevents	unknown	developers	from	overwriting
commits.

On	the	other	hand,	fetching	over	HTTP	requires	no	username	or	password,	but
pushing	is	not	possible.	This	lets	anyone	fetch	from	a	repository	without
compromising	its	security.	In	the	integrator	workflow,	other	developers	access
your	repository	via	HTTP,	while	you	publish	changes	via	HTTPS.	This	is	also
the	reason	why	John	can’t	push	to	his	origin	remote.

Of	course,	if	you’re	working	on	a	private	project,	anonymous	HTTP	access
would	be	disabled	for	that	repository.

View	John’s	Contributions	(You)
Ok,	we’re	done	being	John	and	we’re	ready	to	integrate	his	code	into	the	official
project.	Let’s	start	by	switching	back	into	our	repository	and	adding	John’s
public	repository	as	a	remote.

cd	../my-git-repo

git	remote	add	john	http://bitbucket.org/<username>/johns-repo.git

Note	that	we	don’t	care	about	anything	in	John’s	private	repository—the	only
thing	that	matters	are	his	published	changes.	Let’s	download	his	branches	and
take	a	look	at	what	he’s	been	working	on:

take	a	look	at	what	he’s	been	working	on:

git	fetch	john

git	branch	-r

git	log	master..john/pink-page	--stat

We	can	visualize	this	history	information	as	the	following.

Before	merging	John’s	pink-page	branch

Let’s	take	a	look	at	his	actual	changes:

git	checkout	john/pink-page

Open	up	the	pink.html	file	to	see	if	it’s	ok.	Remember	that	John	isn’t	a	trusted
collaborator,	and	we	would	normally	have	no	idea	what	this	file	might	contain.
With	that	in	mind,	it’s	incredibly	important	to	verify	its	contents.	Never	blindly
merge	content	from	a	third-party	contributor.

Integrate	John’s	Contributions	(You)
Assuming	we	approve	John’s	updates,	we’re	now	ready	to	merge	it	into	the
project.

git	checkout	master

git	merge	john/pink-page

Notice	that	is	the	exact	same	way	we	incorporated	Mary’s	changes	in	the
centralized	workflow,	except	now	we’re	pulling	from	and	pushing	to	different
locations:

The	integrator	workflow	with	John

Furthermore,	John’s	workflow	is	just	like	ours:	develop	in	a	local,	private
repository,	then	push	changes	to	the	public	one.	The	integrator	workflow	is
merely	a	standardized	way	of	organizing	the	collaboration	effort—nothing	has
changed	about	how	we	develop	locally,	and	we’re	using	the	same	Git	commands
as	we	have	been	for	the	last	few	modules.

Publish	John’s	Contributions	(You)
We’ve	integrated	John’s	contribution	into	our	local	my-git-repo	repository,	but
no	one	else	knows	what	we’ve	done.	It’s	time	to	publish	our	master	branch
again.

git	push	origin	master

Since	we	designated	our	public	Bitbucket	repository	as	the	“official”	source	for
our	project,	everyone	(i.e.,	Mary	and	John)	will	now	be	able	to	synchronize	with
it.

Update	Mary’s	Repository	(Mary)
Mary	should	now	be	pulling	changes	from	our	Bitbucket	repository	instead	of
the	central	one	from	the	previous	module.	This	should	be	fairly	easy	for	her	to
configure.

cd	../marys-repo

git	remote	rm	origin

git	remote	add	origin	http://bitbucket.org/<username>/my-git-repo.git

Again,	remember	to	change	<username>	to	your	Bitbucket	account’s	username.
For	the	sake	of	brevity,	we’ll	do	a	blind	merge	to	add	John’s	updates	to	Mary’s
repository	(normally,	Mary	should	check	what	she’s	integrating	before	doing
so).

git	checkout	master

git	fetch	origin

git	rebase	origin/master

For	Mary,	it	doesn’t	really	matter	that	the	updates	came	from	John.	All	she	has
to	know	is	that	the	“official”	master	branch	moved	forward,	prompting	her	to
synchronize	her	private	repository.

Update	John’s	Repository	(John)
John	still	needs	to	incorporate	the	pink	page	into	his	master	branch.	He	should
not	merge	directly	from	his	pink-page	topic	branch	because	we	could	have
edited	his	contribution	before	publishing	it	or	included	other	contributions	along
with	it.	Instead,	he’ll	pull	from	the	“official”	master:

cd	../johns-repo

git	checkout	master

git	fetch	origin

git	rebase	origin/master

If	John	had	updated	master	directly	from	his	local	pink-page,	it	could	have
wound	up	out-of-sync	from	the	main	project.	For	this	reason,	the	integrator
workflow	requires	that	everyone	pull	from	a	single,	official	repository,	while
they	all	push	to	their	own	public	repositories:

The	integrator	workflow	with	many	developers

In	this	way,	additions	from	one	contributor	can	be	approved,	integrated,	and
made	available	to	everyone	without	interrupting	anyone’s	independent
developments.

Conclusion
Using	the	integrator	workflow,	our	private	development	process	largely	remains
the	same	(develop	a	feature	branch,	merge	it	into	master,	and	publish	it).	But,

we’ve	added	an	additional	task:	incorporating	changes	from	third-party
contributors.	Luckily,	this	doesn’t	require	any	new	skills—just	access	to	a	few
more	remote	repositories.

While	this	setup	forces	us	to	keep	track	of	more	remotes,	it	also	makes	it	much,
much	easier	to	work	with	a	large	number	of	developers.	You’ll	never	have	to
worry	about	security	using	an	integrator	workflow	because	you’ll	still	be	the
only	one	with	access	to	the	“official”	repository.

There’s	also	an	interesting	side-effect	to	this	kind	of	security.	By	giving	each
developer	their	own	public	repository,	the	integrator	workflow	creates	a	more
stable	development	environment	for	open-source	software	projects.	Should	the
lead	developer	stop	maintaining	the	“official”	repository,	any	of	the	other
participants	could	take	over	by	simply	designating	their	public	repository	as	the
new	“official”	project.	This	is	part	of	what	makes	Git	a	distributed	version
control	system:	there	is	no	single	central	repository	that	Git	forces	everyone	to
rely	upon.

John/Mary	taking	over	project	maintenance

In	the	next	module,	we’ll	take	a	look	at	an	even	more	flexible	way	to	share
commits.	This	low-level	approach	will	also	give	us	a	better	understanding	of

commits.	This	low-level	approach	will	also	give	us	a	better	understanding	of
how	Git	internally	manages	our	content.

Patch	Workflows
Thus	far,	all	of	the	collaboration	workflows	we’ve	seen	rely	heavily	on	branches.
For	example,	in	the	last	module,	a	contributor	had	to	publish	an	entire	branch	for
us	to	merge	into	our	project.	However,	it’s	also	possible	to	communicate	directly
on	the	commit	level	using	a	patch.

A	patch	file	represents	a	single	set	of	changes	(i.e.,	a	commit)	that	can	be	applied
to	any	branch,	in	any	order.	In	this	sense,	the	patch	workflow	is	akin	to
interactive	rebasing,	except	you	can	easily	share	patches	with	other	developers.
This	kind	of	communication	lessens	the	importance	of	a	project’s	branch
structure	and	gives	complete	control	to	the	project	maintainer	(at	least	with
regards	to	incorporating	contributions).

Integrating	on	the	commit	level	will	also	give	us	a	deeper	understanding	of	how
a	Git	repository	records	project	history.

Download	the	repositories	for	this	module

If	you’ve	been	following	along	from	the	previous	module,	you	already	have
everything	you	need.	Otherwise,	download	the	zipped	Git	repositories	from	the
above	link,	uncompress	them,	and	you’re	good	to	go.	If	you’ve	set	up	a
Bitbucket	account,	you	should	also	run	the	following	commands	to	configure	the
downloaded	repositories:

cd	pathto/my-git-repo

git	remote	add	origin	https://<username>@bitbucket.org/<username>/my-git-repo.git

cd	../marys-repo

git	remote	add	origin	http://bitbucket.org/<username>/my-git-repo.git

Change	the	Pink	Page	(Mary)
We’ll	begin	by	pretending	to	be	Mary	again.	Mary	didn’t	like	the	pink	page	that
John	contributed	and	wants	to	change	it.

http://rypress.com/tutorials/git/media/repo-zips/patch-workflows.zip

cd	pathto/marys-repo

git	checkout	-b	pink-page

Developing	in	a	new	branch	not	only	gives	Mary	an	isolated	environment,	it	also
makes	it	easier	to	create	a	series	of	patches	once	she’s	done	editing	the	pink
page.	Find	these	lines	in	pink.html:

<p>Pink	is	girly,

flirty	and	fun!</p>

and	change	them	to	the	following.

<p>Only	real	men	wear	pink!</p>

Stage	and	commit	the	update	as	normal.

git	commit	-a	-m	"Change	pink	to	a	manly	color"

Note	that	Mary’s	local	development	process	doesn’t	change	at	all.	Patches—like
the	centralized	and	integrator	workflows—are	merely	a	way	to	share	changes
amongst	developers.	It	has	little	effect	on	the	core	Git	concepts	introduced	in	the
first	portion	of	this	tutorial.

Create	a	Patch	(Mary)
Mary	can	create	a	patch	from	the	new	commit	using	the	git	format‑patch
command.

git	format-patch	master

This	creates	a	file	called	0001-Change-pink-to-a-manly-color.patch	that
contains	enough	information	to	re-create	the	commit	from	the	last	step.	The
master	parameter	tells	Git	to	generate	patches	for	every	commit	in	the	current

branch	that’s	missing	from	master.

Open	up	the	patch	file	in	a	text	editor.	As	shown	by	the	addresses	in	the	top	of
the	file,	it’s	actually	a	complete	email.	This	makes	it	incredibly	easy	to	send
patches	to	other	developer.	Further	down,	you	should	see	the	following.

index	98e10a1..828dd1a	100644

---	a/pink.html

+++	b/pink.html

@@	-7,8	+7,7	@@

	</head>

	<body>

			<h1	style="color:	#F0F">The	Pink	Page</h1>

-		<p>Pink	is	girly,

-		flirty	and	fun!</p>

+		<p>Only	real	men	wear	pink!</p>

	

			<p>Return	to	home	page</p>

	</body>

This	unique	formatting	is	called	a	diff,	because	it	shows	the	difference	between
two	versions	of	a	file.	In	our	case,	it	tells	us	what	happened	to	the	pink.html	file
between	the	98e10a1	and	828dd1a	commits	(your	patch	will	contain	different
commit	ID’s).	The	-7,8	+7,7	portion	describes	the	lines	affected	in	the
respective	versions	of	the	file,	and	the	rest	of	the	text	shows	us	the	content	that
has	been	changed.	The	lines	beginning	with	-	have	been	deleted	in	the	new
version,	and	the	line	starting	with	+	has	been	added.

While	you	don’t	have	to	know	the	ins-and-outs	of	diffs	to	make	use	of	patches,
you	do	need	to	understand	that	a	single	patch	file	represents	a	complete	commit.
And,	since	it’s	a	normal	file	(and	also	an	email),	it’s	much	easier	to	pass	around
than	a	Git	branch.

Delete	the	patch	file	for	now	(we’ll	re-create	it	later).

Add	a	Pink	Block	(Mary)
Before	learning	how	to	turn	patches	back	into	commits,	Mary	will	add	one	more
snapshot.

In	pink.html,	add	the	following	on	the	line	after	the	<meta>	tag.

<style>

		div	{

				width:	300px;

				height:	50px;

		}

</style>

And,	add	the	next	line	of	HTML	after	Only	real	men	wear	pink!:

<div	style="background-color:	#F0F"></div>

Stage	and	commit	the	snapshot.

git	commit	-a	-m	"Add	a	pink	block	of	color"

Mary’s	repository	now	contains	two	commits	after	the	tip	of	master:

Adding	two	commits	on	the	pink-page	branch

Create	Patch	of	Entire	Branch	(Mary)
Mary	can	use	the	same	command	as	before	to	generate	patches	for	all	the
commits	in	her	pink-page	branch.

git	format-patch	master

The	first	patch	is	the	exact	same	as	we	previously	examined,	but	we	also	have	a
new	one	called	0002-Add-a-pink-block-of-color.patch.	Note	that	the	first
line	of	the	commit	message	will	always	be	used	to	make	a	descriptive	filename
for	the	patch.	You	should	find	the	following	diff	in	the	second	patch.

index	828dd1a..2713b10	100644

---	a/pink.html

+++	b/pink.html

@@	-4,10	+4,17	@@

			<title>The	Pink	Page</title>

			<link	rel="stylesheet"	href="style.css"	>

			<meta	charset="utf-8"	>

+		<style>

+				div	{

+						width:	300px;

+						height:	50px;

+				}

+		</style>

	</head>

	<body>

			<h1	style="color:	#F0F">The	Pink	Page</h1>

			<p>Only	real	men	wear	pink!</p>

+		<div	style="background-color:	#F0F"></div>

	

			<p>Return	to	home	page</p>

	</body>

This	is	the	same	formatting	as	the	first	patch,	except	its	lack	of	-	lines	indicate
that	we	only	added	HTML	during	the	second	commit.	As	you	can	see,	this	patch
is	really	just	a	machine-readable	summary	of	our	actions	from	the	previous
section.

Mail	the	Patches	(Mary)
Now	that	Mary	has	prepared	a	series	of	patches,	she	can	send	them	to	the	project
maintainer	(us).	In	the	typical	patch	workflow,	she	would	send	them	via	email
using	one	of	the	following	methods:

Copying	and	pasting	the	contents	of	the	patch	files	into	an	email	client.	If
she	uses	this	method,	Mary	would	have	to	make	sure	that	her	email
application	doesn’t	change	the	whitespace	in	the	patch	upon	sending	it.
Sending	the	patch	file	as	an	attachment	to	a	normal	email.
Using	the	convenient	git	send-email	command	and	specifying	a	file	or	a
directory	of	files	to	send.	For	example,	git	send-email	.	will	send	all	the
patches	in	the	current	directory.	Git	also	requires	some	special
configurations	for	this	command.	Please	consult	the	official	Git
documentation	for	details.

The	point	is,	the	.patch	files	need	to	find	their	way	into	the	Git	repository	of
whoever	wants	to	add	it	to	their	project.	For	our	example,	all	we	need	to	do	is
copy	the	patches	into	the	my-git-repo	directory	that	represents	our	local	version
of	the	project.

Apply	the	Patches	(You)
Copy	the	two	patch	files	from	marys-repo	into	my-git-repo.	Using	the	new	git
am	command,	we	can	use	these	patches	to	add	Mary’s	commits	to	our	repository.

cd	../my-git-repo

http://www.kernel.org/pub/software/scm/git/docs/git-send-email.html

git	checkout	-b	patch-integration

git	am	<	0001-Change-pink-to-a-manly-color.patch

git	log	master..HEAD	--stat

First,	notice	that	we’re	doing	our	integrating	in	a	new	topic	branch.	Again,	this
ensures	that	we	won’t	destroy	our	existing	functionality	and	gives	us	a	chance	to
approve	changes.	Second,	the	git	am	command	takes	a	patch	file	and	creates	a
new	commit	from	it.	The	log	output	shows	us	that	our	integration	branch
contains	Mary’s	update,	along	with	her	author	information.

Let’s	repeat	the	process	for	the	second	commit.

git	am	<	0002-Add-a-pink-block-of-color.patch

git	log	master..HEAD	--stat

The	git	am	command	is	configured	to	read	from	something	called	“standard
input,”	and	the	<	character	is	how	we	can	turn	a	file’s	contents	into	standard
input.	As	it’s	really	more	of	an	operating	system	topic,	you	can	just	think	of	this
syntax	as	a	quirk	of	the	git	am	command.

After	applying	this	patch,	our	integration	branch	now	looks	exactly	like	Mary’s
pink-page	branch.	We	applied	Mary’s	patches	in	the	same	order	she	did,	but
that	didn’t	necessarily	have	to	be	the	case.	The	whole	idea	behind	patches	is	that
they	let	you	isolate	a	commit	and	move	it	around	as	you	please.

Integrate	the	Patches	(You)
Once	again,	we’re	in	the	familiar	situation	of	integrating	a	topic	branch	into	the
stable	master	branch.

git	checkout	master

git	merge	patch-integration

git	branch	-d	patch-integration

git	clean	-f

git	push	origin	master

Mary’s	updates	are	now	completely	integrated	into	our	local	repository,	so	we
can	get	rid	of	the	patch	files	with	git	clean.	This	was	also	an	appropriate	time
to	push	changes	to	the	public	repository	so	other	developers	can	access	the	most
up-to-date	version	of	the	project.

Update	Mary’s	Repository	(Mary)
Mary	might	be	tempted	to	merge	her	pink-page	branch	directly	into	her	master
branch,	but	this	would	be	a	mistake.	Her	master	branch	must	track	the	“official”
repository’s	master,	as	discussed	in	the	previous	module.

cd	../marys-repo

git	checkout	master

git	fetch	origin

git	rebase	origin/master

git	branch	-D	pink-page

git	clean	-f

Patches	are	a	convenient	way	to	share	commits	amongst	developers,	but	the
patch	workflow	still	requires	an	“official”	repository	that	contains	everybody’s
changes.	What	would	have	happened	if	Mary	wasn’t	the	only	one	sending
patches	to	us?	We	may	very	well	have	applied	several	different	patches	or
applied	Mary’s	contributions	in	a	different	order.	Using	Mary’s	pink-page	to
update	her	master	branch	would	completely	ignore	all	these	updates.

Taking	this	into	consideration,	our	final	patch	workflow	resembles	the
following.

The	patch	workflow

Conclusion
Whereas	remote	repositories	are	a	way	to	share	entire	branches,	patches	are	a
way	to	send	individual	commits	to	another	developer.	Keep	in	mind	that	patches
are	usually	only	sent	to	a	project	maintainer,	who	then	integrates	them	into	the
“official”	project	for	all	to	see.	It	would	be	impossible	for	everyone	to
communicate	using	only	patches,	as	no	one	would	be	applying	them	in	the	same
order.	Eventually,	everyone’s	project	history	would	look	entirely	different.

In	many	ways,	patches	are	a	simpler	way	to	accept	contributions	than	the
integrator	workflow	from	the	previous	module.	Only	the	project	maintainer
needs	a	public	repository,	and	he’ll	never	have	to	peek	at	anyone	else’s
repository.	From	the	maintainer’s	perspective,	patches	also	provide	the	same
security	as	the	integrator	workflow:	he	still	won’t	have	to	give	anyone	access	to
his	“official”	repository.	But,	now	he	won’t	have	to	keep	track	of	everybody’s

his	“official”	repository.	But,	now	he	won’t	have	to	keep	track	of	everybody’s
remote	repositories,	either.

As	a	programmer,	you’re	most	likely	to	use	patches	when	you	want	to	fix	a	bug
in	someone	else’s	project.	After	fixing	it,	you	can	send	them	a	patch	of	the
resulting	commit.	For	this	kind	of	one-time-fix,	it’s	much	more	convenient	for
you	to	generate	a	patch	than	to	set	up	a	public	Git	repository.

This	module	concludes	our	discussion	of	the	standard	Git	workflows.	Hopefully,
you	now	have	a	good	idea	of	how	Git	can	better	manage	your	personal	and
professional	software	projects	using	a	centralized,	integrator,	or	patch	workflow.
In	the	next	module,	we’ll	switch	gears	and	introduce	a	variety	of	practical	Git
commands.

Quick	Reference
git	format-patch	<branch-name>

Create	a	patch	for	each	commit	contained	in	the	current	branch	but	not	in
<branch-name>.	You	can	also	specify	a	commit	ID	instead	of	<branch-name>.

git	am	<	<patch-file>

Apply	a	patch	to	the	current	branch.

Tips	&	Tricks
This	module	presents	a	broad	survey	of	useful	Git	utilities.	We’ll	take	a	step
back	from	the	theoretical	aspects	of	Git	and	focus	on	common	tasks	like
preparing	a	project	for	release	and	backing	up	a	repository.	While	working
through	this	module,	your	goal	shouldn’t	be	to	master	all	of	these	miscellaneous
tools,	but	rather	to	understand	why	they	were	created	and	when	they	might	come
in	handy.

Download	the	repositories	for	this	module

If	you’ve	been	following	along	from	the	previous	module,	you	already	have
everything	you	need.	Otherwise,	download	the	zipped	Git	repositories	from	the
above	link,	uncompress	them,	and	you’re	good	to	go.

Archive	The	Repository
First,	let’s	export	our	repository	into	a	ZIP	archive.	Run	the	following	command
in	your	local	copy	of	my-git-repo.

git	archive	master	--format=zip	--output=../website-12-10-2012.zip

Or,	for	Unix	users	that	would	prefer	a	tarball:

git	archive	master	--format=tar	--output=../website-12-10-2012.tar

This	takes	the	current	master	branch	and	places	all	of	its	files	into	a	ZIP	archive
(or	a	tarball),	omitting	the	.git	directory.	Removing	the	.git	directory	removes
all	version	control	information,	and	you’re	left	with	a	single	snapshot	of	your
project.

You	can	send	the	resulting	archive	to	a	client	for	review,	even	if	they	don’t	have
Git	installed	on	their	machine.	This	is	also	an	easy	way	to	create	Git-independent
backups	of	important	revisions,	which	is	always	a	good	idea.

http://rypress.com/tutorials/git/media/repo-zips/tips-and-tricks.zip

Bundle	the	Repository
Similar	to	the	git	archive	command,	git	bundle	turns	a	repository	into	a
single	file.	However,	in	this	case,	the	file	retains	the	versioning	information	of
the	entire	project.	Try	running	the	following	command.

git	bundle	create	../repo.bundle	master

It’s	like	we	just	pushed	our	master	branch	to	a	remote,	except	it’s	contained	in	a
file	instead	of	a	remote	repository.	We	can	even	clone	it	using	the	same	git
clone	command:

cd	..

git	clone	repo.bundle	repo-copy	-b	master

cd	repo-copy

git	log

cd	../my-git-repo

The	log	output	should	show	you	the	entire	history	of	our	master	branch,	and
repo.bundle	is	also	the	origin	remote	for	the	new	repository.	This	is	the	exact
behavior	we	encountered	when	cloning	a	“normal”	Git	repository.

Bundles	are	a	great	way	to	backup	entire	Git	repositories	(not	just	an	isolated
snapshot	like	git	archive).	They	also	let	you	share	changes	without	a	network
connection.	For	example,	if	you	didn’t	want	to	configure	the	SSH	accounts	for	a
private	Git	server,	you	could	bundle	up	the	repository,	put	it	on	a	jump	drive,
and	walk	it	over	to	your	co-worker’s	computer.	Of	course,	this	could	become	a
bit	tiresome	for	active	projects.

We	won’t	be	needing	the	repo.bundle	file	and	repo-copy	folder,	so	go	ahead
and	delete	them	now.

Ignore	a	File

Remember	that	Git	doesn’t	automatically	track	files	because	we	don’t	want	to
record	generated	files	like	C	binaries	or	compiled	Python	modules.	But,	seeing
these	files	under	the	“Untracked	files”	list	in	git	status	can	get	confusing	for
large	projects,	so	Git	lets	us	ignore	content	using	a	special	text	file	called
.gitignore.	Each	file	or	directory	stored	in	.gitignore	will	be	invisible	to	Git.

Let’s	see	how	this	works	by	creating	a	file	called	notes.txt	to	store	some
personal	(private)	comments	about	the	project.	Add	some	text	to	it	and	save	it,
then	run	the	following.

git	status

As	expected,	this	will	show	notes.txt	in	the	“Untracked	files”	section.	Next,
create	a	file	called	.gitignore	in	the	my-git-repo	folder	and	add	the	following
text	to	it.	Windows	users	can	create	a	file	that	starts	with	a	period	by	executing
the	touch	.gitignore	command	in	Git	Bash	(you	should	also	make	sure	hidden
files	are	visible	in	your	file	browser).

notes.txt

Run	another	git	status	and	you’ll	see	that	the	notes	file	no	longer	appears
under	“Untracked	files”,	but	.gitignore	does.	This	is	a	common	file	for	Git-
based	projects,	so	let’s	add	it	to	the	repository.

git	add	.gitignore

git	commit	-m	"Add	.gitignore	file"

git	status

You	can	also	specify	entire	directories	in	.gitignore	or	use	the	*	wildcard	to
ignore	files	with	a	particular	extension.	For	example,	the	following	is	a	typical
.gitignore	file	for	a	simple	C	project.	It	tells	Git	to	overlook	all	.o,	.out,	and
.exe	files	in	the	repository.

*.o

.out

.exe

Stash	Uncommitted	Changes
Next,	we’ll	take	a	brief	look	at	stashing,	which	conveniently	“stashes”	away
uncommitted	changes.	Open	up	style.css	and	change	the	h1	element	to:

h1	{

		font-size:	32px;

		font-family:	"Times	New	Roman",	serif;

}

Now	let’s	say	we	had	to	make	an	emergency	fix	to	our	project.	We	don’t	want	to
commit	an	unfinished	feature,	and	we	also	don’t	want	to	lose	our	current	CSS
addition.	The	solution	is	to	temporarily	remove	these	changes	with	the	git
stash	command:

git	status

git	stash

git	status

Before	the	stash,	style.css	was	listed	as	“Changed	by	not	updated.”	The	git
stash	command	hid	these	changes,	giving	us	a	clean	working	directory.	We’re
now	able	to	switch	to	a	new	hotfix	branch	to	make	our	important	updates—
without	having	to	commit	a	meaningless	snapshot	just	to	save	our	current	state.

Let’s	pretend	we’ve	completed	our	emergency	update	and	we’re	ready	to
continue	working	on	our	CSS	changes.	We	can	retrieve	our	stashed	content	with
the	following	command.

git	stash	apply

The	style.css	file	now	looks	the	same	as	it	did	before	the	stash,	and	we	can
continue	development	as	if	we	were	never	interrupted.	Whereas	patches
represent	a	committed	snapshot,	a	stash	represents	a	set	of	uncommitted
changes.	It	takes	the	uncommitted	modifications,	stores	them	internally,	then
does	a	git	reset	--hard	to	give	us	a	clean	working	directory.	This	also	means
that	stashes	can	be	applied	to	any	branch,	not	just	the	one	from	which	it	was
created.

In	addition	to	temporarily	storing	uncommitted	changes,	this	makes	stashing	a
simple	way	to	transfer	modifications	between	branches.	So,	for	example,	if	you
ever	found	yourself	developing	on	the	wrong	branch,	you	could	stash	all	your
changes,	checkout	the	correct	branch,	then	run	a	git	stash	apply.

Let’s	undo	these	CSS	updates	before	moving	on.

git	reset	--hard

Hook	into	Git’s	Internals
Arguably,	Git’s	most	useful	configuration	options	are	its	hooks.	A	hook	is	a
script	that	Git	executes	every	time	a	particular	event	occurs	in	a	repository.	In
this	section,	we’ll	take	a	hands-on	look	at	Git	hooks	by	automatically	publishing
our	website	every	time	someone	pushes	to	the	central-repo.git	repository.

In	the	central-repo.git	directory,	open	the	hooks	directory	and	rename	the	file
post-update.sample	to	post-update.	After	removing	the	.sample	extension,
this	script	will	be	executed	whenever	any	branch	gets	pushed	to	central-
repo.git.	Replace	the	default	contents	of	post-update	with	the	following.

#!/bin/sh

#	Output	a	friendly	message

echo	"Publishing	master	branch!"	>&2

#	Remove	the	old	`my-website`	directory	(if	necessary)

rm	-rf	../my-website

#	Create	a	new	`my-website`	directory

mkdir	../my-website

#	Archive	the	`master`	branch

git	archive	master	--format=tar	--output=../my-website.tar

#	Uncompress	the	archive	into	the	`my-website`	directory

tar	-xf	../my-website.tar	-C	../my-website

exit	0

While	shell	scripts	are	outside	the	scope	of	this	tutorial,	the	majority	of
commands	in	the	above	code	listing	should	be	familiar	to	you.	In	short,	this	new
post-update	script	creates	an	archive	of	the	master	branch,	then	exports	it	into
a	directory	called	my-website.	This	is	our	“live”	website.

We	can	see	the	script	in	action	by	pushing	a	branch	to	the	central-repo.git
repository.

git	push	../central-repo.git	master

After	the	central	repository	receives	the	new	master	branch,	our	post-update
script	is	executed.	You	should	see	the	Publishing	master	branch!	message
echoed	from	the	script,	along	with	a	new	my-website	folder	in	the	same
directory	as	my-git-repo.	You	can	open	index.html	in	a	web	browser	to	verify
that	it	contains	all	the	files	from	our	master	branch,	and	you	can	also	see	the
intermediate	.tar	archive	produced	by	the	hook.

This	is	a	simple,	unoptimized	example,	but	Git	hooks	are	infinitely	versatile.
Each	of	the	.sample	scripts	in	the	hooks	directory	represents	a	different	event

that	you	can	listen	for,	and	each	of	them	can	do	anything	from	automatically
creating	and	publishing	releases	to	enforcing	a	commit	policy,	making	sure	a
project	compiles,	and	of	course,	publishing	websites	(that	means	no	more	clunky
FTP	uploads).	Hooks	are	even	configured	on	a	per-repository	basis,	which
means	you	can	run	different	scripts	in	your	local	repository	than	your	central
repository.

For	a	detailed	description	of	the	available	hooks,	please	consult	the	official	Git
documentation.

View	Diffs	Between	Commits
Up	until	now,	we’ve	been	using	git	log	--stat	to	view	the	changes	introduced
by	new	commits.	However,	this	doesn’t	show	us	which	lines	have	been	changed
in	any	given	file.	For	this	level	of	detail,	we	need	the	git	diff	command.	Let’s
take	a	look	at	the	updates	from	the	Add	a	pink	block	of	color	commit:

git	diff	HEAD~2..HEAD~1

This	will	output	the	diff	between	the	Add	a	pink	block	of	color	commit
(HEAD~1)	and	the	one	before	it	(HEAD~2):

index	828dd1a..2713b10	100644

---	a/pink.html

+++	b/pink.html

@@	-4,10	+4,17	@@

			<title>The	Pink	Page</title>

			<link	rel="stylesheet"	href="style.css"	>

			<meta	charset="utf-8"	>

+		<style>

+				div	{

+						width:	300px;

+						height:	50px;

+				}

http://www.kernel.org/pub/software/scm/git/docs/githooks.html

+		</style>

	</head>

	<body>

			<h1	style="color:	#F0F">The	Pink	Page</h1>

			<p>Only	real	men	wear	pink!</p>

+		<div	style="background-color:	#F0F"></div>

			<p>Return	to	home	page</p>

	</body>

This	diff	looks	nearly	identical	to	the	patches	we	created	in	the	previous	module,
and	it	shows	exactly	what	was	added	to	get	from	HEAD~2	to	HEAD~1.	The	git
diff	command	is	incredibly	useful	for	pinpointing	contributions	from	other
developers.	For	example,	we	could	have	used	the	following	to	view	the
differences	between	John’s	pink-page	branch	and	our	master	before	merging	it
into	the	project	in	Distributed	Workflows.

git	diff	master..john/pink-page

This	flexible	command	can	also	generate	a	detailed	view	of	our	uncommitted
changes.	Open	up	blue.html,	make	any	kind	of	change,	and	save	the	file.	Then,
run	git	diff	without	any	arguments:

git	diff

And,	just	in	case	we	forgot	what	was	added	to	the	staging	area,	we	can	use	the	-
-cached	flag	to	generate	a	diff	between	the	staged	snapshot	and	the	most	recent
commit:

git	add	blue.html

git	diff	--cached

A	plain	old	git	diff	won’t	output	anything	after	blue.html	is	added	to	the

staging	area,	but	the	changes	are	now	visible	through	the	‑‑cached	flag.	These
are	the	three	main	configurations	of	the	git	diff	command.

Reset	and	Checkout	Files
We’ve	used	git	reset	and	git	checkout	many	times	throughout	this	tutorial;
however,	we’ve	only	seen	them	work	with	branches/commits.	You	can	also	reset
and	check	out	individual	files,	which	slightly	alters	the	behavior	of	both
commands.

The	git	reset	we’re	accustomed	to	moves	the	current	branch	to	a	new	commit
and	optionally	updates	the	working	directory	to	match.	But	when	we	pass	a	file
path,	git	reset	updates	the	staging	area	to	match	the	given	commit	instead	of
the	working	directory,	and	it	doesn’t	move	the	current	branch	pointer.	This
means	we	can	remove	blue.html	from	the	staged	snapshot	with	the	following
command.

git	reset	HEAD	blue.html

git	status

This	makes	the	blue.html	in	the	staging	area	match	the	version	stored	in	HEAD,
but	it	leaves	the	working	directory	and	current	branch	alone.	The	result	is	a
staging	area	that	matches	the	most	recent	commit	and	a	working	directory	that
contains	the	modified	blue.html	file.	In	other	words,	this	type	of	git	reset	can
be	used	to	unstage	a	file:

Using	git	reset	with	a	file	path

Let’s	take	this	one	step	further	with	git	checkout.	The	git	checkout	we’ve
been	using	updates	the	working	directory	and	switches	branches.	If	we	add	a	file
path	to	git	checkout,	it	narrows	its	focus	to	only	the	specified	file	and	does	not
update	the	branch	pointer.	This	means	that	we	can	“check	out”	the	most	recent
version	of	blue.html	with	the	following	command.

git	checkout	HEAD	blue.html

git	status

Our	blue.html	file	now	looks	exactly	like	the	version	stored	in	HEAD,	and	we
thus	have	a	clean	working	directory.	Passing	a	file	path	to	git	checkout	reverts
that	file	to	the	specified	commit.

Using	git	checkout	with	a	file	path

To	summarize	the	file-path	behavior	of	git	reset	and	git	checkout,	both	take
a	committed	snapshot	as	an	reference	point	and	make	a	file	in	the	staging	area	or
the	working	directory	match	that	reference,	respectively.

Aliases	and	Other	Configurations
Typing	git	checkout	every	time	you	wanted	to	see	a	new	branch	over	the	last
ten	modules	has	been	a	bit	verbose.	Fortunately,	Git	lets	you	create	aliases,
which	are	shortcuts	to	other	commands.	Let’s	create	a	few	aliases	for	our	most
common	commands:

git	config	--global	alias.co	checkout

git	config	--global	alias.ci	commit

git	config	--global	alias.br	branch

Now,	we	can	use	git	co	instead	of	git	checkout,	git	ci	for	committing,	and
git	br	for	listing	branches.	We	can	even	use	git	br	<branch-name>	for
creating	a	new	branch.

Git	stores	these	aliases	in	a	global	config	file,	similar	to	the	local	config	file	we

looked	at	in	Mary’s	repository	(marys-repo/.git/config).	By	default,	global
configurations	reside	in	~/.gitconfig,	where	the	~	character	represents	your
home	directory.	This	file	should	resemble	the	following.

[user]

				name	=	Ryan

				email	=	ryan.example@rypress.com

[alias]

				co	=	checkout

				ci	=	commit

				br	=	branch

Of	course,	your	settings	should	reflect	the	name	and	email	you	entered	in	The
Basics.	As	you	can	see,	all	of	our	new	aliases	are	also	stored	in	.gitconfig.
Let’s	add	a	few	more	useful	configurations	by	modifying	this	file	directly.
Append	the	following	to	.gitconfig.

[color]

				status	=	always

[core]

				editor	=	gvim

This	makes	sure	Git	colorizes	the	output	of	git	status	and	that	it	uses	the
gVim	text	editor	for	creating	commit	messages.	To	use	a	different	editor,	simply
change	gvim	to	the	command	that	opens	your	editor.	For	example,	Emacs	users
would	use	emacs,	and	Notepad	users	would	use	notepad.exe.

Git	includes	a	long	list	of	configuration	options,	all	of	which	can	be	found	in	the
official	manual.	Note	that	storing	your	global	configurations	in	a	plaintext	file
makes	it	incredibly	easy	to	transfer	your	settings	to	a	new	Git	installation:	just
copy	~/.gitconfig	onto	your	new	machine.

Conclusion

http://www.kernel.org/pub/software/scm/git/docs/git-config.html

In	this	module,	we	learned	how	to	export	snapshots,	backup	repositories,	ignore
files,	stash	temporary	changes,	hook	into	Git’s	internals,	generate	diffs,	reset
individual	files,	and	create	shorter	aliases	for	common	commands.	While	it’s
impossible	to	cover	all	of	Git’s	supporting	features	in	a	hands-on	guide	such	as
this,	I	hope	that	you	now	have	a	clearer	picture	of	Git’s	numerous	capabilities.

With	all	of	these	convenient	features,	it’s	easy	to	get	so	caught	up	in	designing
the	perfect	workflow	that	you	lose	sight	of	Git’s	underlying	purpose.	As	you	add
new	commands	to	your	repertoire,	remember	that	Git	should	always	make	it
easier	to	develop	a	software	project—never	harder.	If	you	ever	find	that	Git	is
causing	more	harm	than	good,	don’t	be	scared	to	drop	some	of	the	advanced
features	and	go	back	to	the	basics.

The	final	module	will	go	a	long	way	towards	helping	you	realize	the	full
potential	of	Git’s	version	control	model.	We’ll	explore	Git’s	internal	database	by
manually	inspecting	and	creating	snapshots.	Equipped	with	this	low-level
knowledge,	you’ll	be	more	than	ready	to	venture	out	into	the	reality	of	Git-based
project	management.

Quick	Reference
git	archive	<branch-name>	--format=zip	--output=<file>

Export	a	single	snapshot	to	a	ZIP	archive	called	<file>.

git	bundle	create	<file>	<branch-name>

Export	an	entire	branch,	complete	with	history,	to	the	specified	file.

git	clone	repo.bundle	<repo-dir>	-b	<branch-name>

Re-create	a	project	from	a	bundled	repository	and	checkout	<branch‑name>.

git	stash

Temporarily	stash	changes	to	create	a	clean	working	directory.

git	stash	apply

Re-apply	stashed	changes	to	the	working	directory.

git	diff	<commit-id>..<commit-id>

View	the	difference	between	two	commits.

View	the	difference	between	two	commits.

git	diff

View	the	difference	between	the	working	directory	and	the	staging	area.

git	diff	--cached

View	the	difference	between	the	staging	area	and	the	most	recent	commit.

git	reset	HEAD	<file>

Unstage	a	file,	but	don’t	alter	the	working	directory	or	move	the	current	branch.

git	checkout	<commit-id>	<file>

Revert	an	individual	file	to	match	the	specified	commit	without	switching
branches.

git	config	--global	alias.<alias-name>	<git-command>

Create	a	shortcut	for	a	command	and	store	it	in	the	global	configuration	file.

Plumbing
In	Rewriting	History,	I	talked	about	the	internal	representation	of	a	Git
repository.	I	may	have	mislead	you	a	bit.	While	the	reflog,	interactive	rebasing,
and	resetting	may	be	more	complex	features	of	Git,	they	are	still	considered	part
of	the	porcelain,	as	is	every	other	command	we’ve	covered.	In	this	module,
we’ll	take	a	look	at	Git’s	plumbing—the	low-level	commands	that	give	us
access	to	Git’s	true	internal	representation	of	a	project.

Unless	you	start	hacking	on	Git’s	source	code,	you’ll	probably	never	need	to	use
the	plumbing	commands	presented	below.	But,	manually	manipulating	a
repository	will	fill	in	the	conceptual	details	of	how	Git	actually	stores	your	data,
and	you	should	walk	away	with	a	much	better	understanding	of	the	techniques
that	we’ve	been	using	throughout	this	tutorial.	In	turn,	this	knowledge	will	make
the	familiar	porcelain	commands	even	more	powerful.

We’ll	start	by	inspecting	Git’s	object	database,	then	we’ll	manually	create	and
commit	a	snapshot	using	only	Git’s	low-level	interface.

Download	the	repository	for	this	module

If	you’ve	been	following	along	from	the	previous	module,	you	already	have
everything	you	need.	Otherwise,	download	the	zipped	Git	repository	from	the
above	link,	uncompress	it,	and	you’re	good	to	go.

Examine	Commit	Details
First,	let’s	take	a	closer	look	at	our	latest	commit	with	the	git	cat-file
plumbing	command.

git	cat-file	commit	HEAD

The	commit	parameter	tells	Git	that	we	want	to	see	a	commit	object,	and	as	we
already	know,	HEAD	refers	to	the	most	recent	commit.	This	will	output	the

http://rypress.com/tutorials/git/media/repo-zips/plumbing.zip

following,	although	your	IDs	and	user	information	will	be	different.

tree	552acd444696ccb1c3afe68a55ae8b20ece2b0e6

parent	6a1d380780a83ef5f49523777c5e8d801b7b9ba2

author	Ryan	<ryan.example@rypress.com>	1326496982	-0600

committer	Ryan	<ryan.example@rypress.com>	1326496982	-0600

	

Add	.gitignore	file

This	is	the	complete	representation	of	a	commit:	a	tree,	a	parent,	user	data,	and	a
commit	message.	The	user	information	and	commit	message	are	relatively
straightforward,	but	we’ve	never	seen	the	tree	or	parent	values	before.

A	tree	object	is	Git’s	representation	of	the	“snapshots”	we’ve	been	talking	about
since	the	beginning	of	this	tutorial.	They	record	the	state	of	a	directory	at	a	given
point,	without	any	notion	of	time	or	author.	To	tie	trees	together	into	a	coherent
project	history,	Git	wraps	each	one	in	a	commit	object	and	specifies	a	parent,
which	is	just	another	commit.	By	following	the	parent	of	each	commit,	you	can
walk	through	the	entire	history	of	a	project.

Commit	and	tree	objects

Notice	that	each	commit	refers	to	one	and	only	one	tree	object.	From	the	git
cat-file	output,	we	can	also	infer	that	trees	use	SHA-1	checksums	for	their
ID’s.	This	will	be	the	case	for	all	of	Git’s	internal	objects.

Examine	a	Tree
Next,	let’s	try	to	inspect	a	tree	using	the	same	git	cat-file	command.	Make
sure	to	change	552acd4	to	the	ID	of	your	tree	from	the	previous	step.

git	cat-file	tree	552acd4

Unfortunately,	trees	contain	binary	data,	which	is	quite	ugly	when	displayed	in
its	raw	form.	So,	Git	offers	another	useful	plumbing	command:

git	ls-tree	552acd4

This	will	output	the	contents	of	the	tree,	which	looks	an	awful	lot	like	a	directory
listing:

100644	blob	99ed0d431c5a19f147da3c4cb8421b5566600449				.gitignore

040000	tree	ab4947cb27ef8731f7a54660655afaedaf45444d				about

100644	blob	cefb5a651557e135666af4c07c7f2ab4b8124bd7				blue.html

100644	blob	cb01ae23932fd9704fdc5e077bc3c1184e1af6b9				green.html

100644	blob	e993e5fa85a436b2bb05b6a8018e81f8e8864a24				index.html

100644	blob	2a6deedee35cc59a83b1d978b0b8b7963e8298e9				news-1.html

100644	blob	0171687fc1b23aa56c24c54168cdebaefecf7d71				news-2.html

...

By	examining	the	above	output,	we	can	presume	that	“blobs”	represent	files	in
our	repository,	whereas	trees	represent	folders.	Go	ahead	and	examine	the	about
tree	with	another	git	ls-tree	to	see	if	this	really	is	the	case.	You	should	see	the
contents	of	our	about	folder.

So,	blob	objects	are	how	Git	stores	our	file	data,	tree	objects	combine	blobs	and
other	trees	into	a	directory	listing,	then	commit	objects	tie	trees	into	a	project
history.	These	are	the	only	types	of	objects	that	Git	needs	to	implement	nearly
all	of	the	porcelain	commands	we’ve	been	using,	and	their	relationship	is
summed	up	as	follows:

Commit,	tree,	and	blob	objects

Examine	a	Blob
Let’s	take	a	look	at	the	blob	associated	with	blue.html	(be	sure	to	change	the
following	to	the	ID	next	to	blue.html	in	your	tree	output).

git	cat-file	blob	cefb5a6

This	should	display	the	entire	contents	of	blue.html,	confirming	that	blobs
really	are	plain	data	files.	Note	that	blobs	are	pure	content:	there	is	no	mention	of
a	filename	in	the	above	output.	That	is	to	say,	the	name	blue.html	is	stored	in
the	tree	that	contains	the	blob,	not	the	blob	itself.

You	may	recall	from	The	Basics	that	an	SHA-1	checksum	ensures	an	object’s
contents	is	never	corrupted	without	Git	knowing	about	it.	Checksums	work	by
using	the	object’s	contents	to	generate	a	unique	character	sequence.	This	not
only	functions	as	an	identifier,	it	also	guarantees	that	an	object	won’t	be	silently
corrupted	(the	altered	content	would	generate	a	different	ID).

When	it	comes	to	blob	objects,	this	has	an	additional	benefit.	Since	two	blobs
with	the	same	data	will	have	the	same	ID,	Git	must	share	blobs	across	multiple
trees.	For	example,	our	blue.html	file	hasn’t	been	changed	since	it	was	created,

so	our	repository	will	only	have	a	single	associated	blob,	and	all	subsequent	trees
will	refer	to	it.	By	not	creating	duplicate	blobs	for	each	tree	object,	Git	vastly
reduces	the	size	of	a	repository.	With	this	in	mind,	we	can	revise	our	Git	object
diagram	to	the	following.

Commit,	tree,	and	shared	blob	objects

However,	as	soon	as	you	change	a	single	line	in	a	file,	Git	must	create	a	new
blob	object	because	its	contents	will	have	changed,	resulting	in	a	new	SHA-1
checksum.

Examine	a	Tag
The	fourth	and	final	type	of	Git	object	is	the	tag	object	We	can	use	the	same	git
cat-file	command	to	show	the	details	of	a	tag.

git	cat-file	tag	v2.0

This	will	output	the	commit	ID	associated	with	v2.0,	along	with	the	tag’s	name,
author,	creation	date,	and	message.	The	straightforward	relationship	between
tags	and	commits	gives	us	our	finalized	Git	object	diagram:

Commit,	tree,	blob,	and	tag	objects

Inspect	Git’s	Branch	Representation
We	now	have	the	tools	to	fully	explore	Git’s	branch	representation.	Using	the	-t
flag,	we	can	determine	what	kind	of	object	Git	uses	for	branches.

git	cat-file	-t	master

That’s	right,	a	branch	is	just	a	reference	to	a	commit	object,	which	means	we	can
view	it	with	a	normal	git	cat-file.

git	cat-file	commit	master

This	will	output	the	exact	same	information	as	our	original	git	cat-file
commit	HEAD.	It	seems	that	both	the	master	branch	and	HEAD	are	simply
references	to	a	commit	object.

Using	a	text	editor,	open	up	the	.git/refs/heads/master	file.	You	should	find
the	commit	checksum	of	the	most	recent	commit,	which	you	can	view	with	git

log	-n	1.	This	single	file	is	all	Git	needs	to	maintain	the	master	branch—all
other	information	is	extrapolated	through	the	commit	object	relationships
discussed	above.

The	HEAD	reference,	on	the	other	hand,	is	recorded	in	.git/HEAD.	Unlike	the
branch	tips,	HEAD	is	not	a	direct	link	to	a	commit.	Instead,	it	refers	to	a	branch,
which	Git	uses	to	figure	out	which	commit	is	currently	checked	out.	Remember
that	a	detached	HEAD	state	occurred	when	HEAD	did	not	coincide	with	the	tip	of
any	branch.	Internally,	all	this	means	to	Git	is	that	.git/HEAD	doesn’t	contain	a
local	branch.	Try	checking	out	an	old	commit:

git	checkout	HEAD~1

Now,	.git/HEAD	should	contain	a	commit	ID	instead	of	a	branch.	This	tells	Git
that	we’re	in	a	detached	HEAD	state.	Regardless	of	what	state	you’re	in,	the	git
checkout	command	will	always	record	the	checked-out	reference	in	.git/HEAD.

Let’s	get	back	to	our	master	branch	before	moving	on:

git	checkout	master

Explore	the	Object	Database
While	we	have	a	basic	understanding	of	Git’s	object	interaction,	we	have	yet	to
explore	where	Git	keeps	all	of	these	objects.	In	your	my-git-repo	repository,
open	the	folder	.git/objects.	This	is	Git’s	object	database.

Each	object,	regardless	of	type,	is	stored	as	a	file,	using	its	SHA-1	checksum	as
the	filename	(sort	of).	But,	instead	of	storing	all	objects	in	a	single	folder,	they
are	split	up	using	the	first	two	characters	of	their	ID	as	a	directory	name,
resulting	in	an	object	database	that	looks	something	like	the	following.

00		10		28		33		3e		51		5c		6e		77		85		95		f7

01		11		29		34		3f		52		5e		6f		79		86		96		f8

01		11		29		34		3f		52		5e		6f		79		86		96		f8

02		16		2a		35		41		53		63		70		7a		87		98		f9

03		1c		2b		36		42		54		64		71		7c		88		99		fa

0c		26		30		3c		4e		5a		6a		75		83		91		a0		info

0e		27		31		3d		50		5b		6b		76		84		93		a2		pack

For	example,	an	object	with	the	following	ID:

7a52bb857229f89bffa74134ee3de48e5e146105

is	stored	in	a	folder	called	7a,	using	the	remaining	characters	(52bb8...)	as	a
filename.	This	gives	us	an	object	ID,	but	before	we	can	inspect	items	in	the
object	database,	we	need	to	know	what	type	of	object	it	is.	Again,	we	can	use	the
-t	flag:

git	cat-file	-t	7a52bb8

Of	course,	change	the	object	ID	to	an	object	from	your	database	(don’t	forget	to
combine	the	folder	name	with	the	filename	to	get	the	full	ID).	This	will	output
the	type	of	commit,	which	we	can	then	pass	to	a	normal	call	to	git	cat-file.

git	cat-file	blob	7a52bb8

My	object	was	a	blob,	but	yours	may	be	different.	If	it’s	a	tree,	remember	to	use
git	ls-tree	to	turn	that	ugly	binary	data	into	a	pretty	directory	listing.

Collect	the	Garbage
As	your	repository	grows,	Git	may	automatically	transfer	your	object	files	into	a
more	compact	form	know	as	a	“pack”	file.	You	can	force	this	compression	with
the	garbage	collection	command,	but	beware:	this	command	is	undo-able.	If	you
want	to	continue	exploring	the	contents	of	the	.git/objects	folder,	you	should
do	so	before	running	the	following	command.	Normal	Git	functionality	will	not
be	affected.

git	gc

This	compresses	individual	object	files	into	a	faster,	smaller	pack	file	and
removes	dangling	commits	(e.g.,	from	a	deleted,	unmerged	branch).

Of	course,	all	of	the	same	object	ID’s	will	still	work	with	git	cat-file,	and	all
of	the	porcelain	commands	will	remain	unaffected.	The	git	gc	command	only
changes	Git’s	storage	mechanism—not	the	contents	of	a	repository.	Running	git
gc	every	now	and	then	is	usually	a	good	idea,	as	it	keeps	your	repository
optimized.

Add	Files	to	the	Index
Thus	far,	we’ve	been	discussing	Git’s	low-level	representation	of	committed
snapshots.	The	rest	of	this	module	will	shift	gears	and	use	more	“plumbing”
commands	to	manually	prepare	and	commit	a	new	snapshot.	This	will	give	us	an
idea	of	how	Git	manages	the	working	directory	and	the	staging	area.

Create	a	new	file	called	news-4.html	in	my-git-repo	and	add	the	following
HTML.

<!DOCTYPE	html>

<html	lang="en">

<head>

		<title>Indigo	Invasion</title>

		<link	rel="stylesheet"	href="style.css"	/>

		<meta	charset="utf-8"	/>

</head>

<body>

		<h1	style="color:	#A0C">Indigo	Invasion</h1>

		<p>Last	week,	a	coalition	of	Asian	designers,	artists,

		and	advertisers	announced	the	official	color	of	Asia:

		Indigo.</p>

				

		<p>Return	to	home	page</p>

</body>

</html>

Then,	update	the	index.html	“News”	section	to	match	the	following.

<h2	style="color:	#C00">News</h2>

		Blue	Is	The	New	Hue

		Our	New	Rainbow

		A	Red	Rebellion

		Middle	East's	Silent	Beast

		Indigo	Invasion

Instead	of	git	add,	we’ll	use	the	low-level	git	update-index	command	to	add
files	to	the	staging	area.	The	index	is	Git’s	term	for	the	staged	snapshot.

git	status

git	update-index	index.html

git	update-index	news-4.html

The	last	command	will	throw	an	error—Git	won’t	let	you	add	a	new	file	to	the
index	without	explicitly	stating	that	it’s	a	new	file:

git	update-index	--add	news-4.html

git	status

We’ve	just	moved	the	working	directory	into	the	index,	which	means	we	have	a
snapshot	prepared	for	committal.	However,	the	process	won’t	be	quite	as	simple
as	a	mere	git	commit.

Store	the	Index	in	the	Database

Remember	that	all	commits	refer	to	a	tree	object,	which	represents	the	snapshot
for	that	commit.	So,	before	creating	a	commit	object,	we	need	to	add	our	index
(the	staged	tree)	to	Git’s	object	database.	We	can	do	this	with	the	following
command.

git	write-tree

This	command	creates	a	tree	object	from	the	index	and	stores	it	in
.git/objects.	It	will	output	the	ID	of	the	resulting	tree	(yours	may	be
different):

5f44809ed995e5b861acf309022ab814ceaaafd6

You	can	examine	your	new	snapshot	with	git	ls-tree.	Keep	in	mind	that	the
only	new	blobs	created	for	this	commit	were	index.html	and	news-4.html.	The
rest	of	the	tree	contains	references	to	existing	blobs.

git	ls-tree	5f44809

So,	we	have	our	tree	object,	but	we	have	yet	to	add	it	to	the	project	history.

Create	a	Commit	Object
To	commit	the	new	tree	object,	we	need	to	manually	figure	out	the	ID	of	the
parent	commit.

git	log	--oneline	-n	1

This	will	output	the	following	line,	though	your	commit	ID	will	be	different.
We’ll	use	this	ID	to	specify	the	parent	of	our	new	commit	object.

3329762	Add	.gitignore	file

The	git	commit-tree	command	creates	a	commit	object	from	a	tree	and	a
parent	ID,	while	the	author	information	is	taken	from	an	environment	variable
set	by	Git.	Make	sure	to	change	5f44809	to	your	tree	ID,	and	3329762	to	your
most	recent	commit	ID.

git	commit-tree	5f44809	-p	3329762

This	command	will	wait	for	more	input:	the	commit	message.	Type	Add	4th
news	item	and	press	Enter	to	create	the	commit	message,	then	Ctrl-Z	and
Enter	for	Windows	or	Ctrl-D	for	Unix	to	specify	an	“End-of-file”	character	to
end	the	input.	Like	the	git	write-tree	command,	this	will	output	the	ID	of	the
resulting	commit	object.

c51dc1b3515f9f8e80536aa7acb3d17d0400b0b5

You’ll	now	be	able	to	find	this	commit	in	.git/objects,	but	neither	HEAD	nor
the	branches	have	been	updated	to	include	this	commit.	It’s	a	dangling	commit	at
this	point.	Fortunately	for	us,	we	know	where	Git	stores	its	branch	information.

Creating	a	dangling	commit

Update	HEAD
Since	we’re	not	in	a	detached	HEAD	state,	HEAD	is	a	reference	to	a	branch.	So,	all
we	need	to	do	to	update	HEAD	is	move	the	master	branch	forward	to	our	new
commit	object.	Using	a	text	editor,	replace	the	contents	of

.git/refs/heads/master	with	the	output	from	git	commit-tree	in	the
previous	step.

If	this	file	seems	to	have	disappeared,	don’t	fret!	This	just	means	that	the	git	gc
command	packed	up	all	of	our	branch	references	into	single	file.	Instead	of
.git/refs/heads/master,	open	up	.git/packed-refs,	find	the	line	with
refs/heads/master,	and	change	the	ID	to	the	left	of	it.

Now	that	our	master	branch	points	to	the	new	commit,	we	should	be	able	to	see
the	news-4.html	file	in	the	project	history.

git	log	-n	2

The	last	four	sections	explain	everything	that	happens	behind	the	scenes	when
we	execute	git	commit	-a	-m	"Some	Message".	Aren’t	you	glad	you	won’t
have	to	use	Git’s	plumbing	ever	again?

Manually	updating	the	master	branch

Conclusion
After	this	module,	you	hopefully	have	a	solid	grasp	of	the	object	database	that
underlies	almost	every	Git	command.	We	examined	commits,	trees,	blobs,	tags,
and	branches,	and	we	even	created	a	commit	object	from	scratch.	All	of	this	was
meant	to	give	you	a	deeper	understanding	of	Git’s	porcelain	commands,	and	you
should	now	feel	ready	to	adapt	Git	to	virtually	any	task	you	could	possibly
demand	from	a	version	control	system.

As	you	migrate	these	skills	to	real-world	projects,	remember	that	Git	is	merely	a
tool	for	tracking	your	files,	not	a	cure-all	for	managing	software	projects.	No
amount	of	intimate	Git	knowledge	can	make	up	for	a	haphazard	set	of
conventions	within	a	development	team.

Thus	concludes	our	journey	through	Git-based	revision	control.	This	tutorial	was
meant	to	prepare	you	for	the	realities	of	distributed	software	development—not
to	transform	you	into	a	Git	expert	overnight.	You	should	be	able	to	manage	your
own	projects,	collaborate	with	other	Git	users,	and,	perhaps	most	importantly,
understand	exactly	what	any	other	piece	of	Git	documentation	is	trying	to
convey.

Your	job	now	is	to	take	these	skills	and	apply	them	to	new	projects,	sift	through
complex	histories	that	you’ve	never	seen	before,	talk	to	other	developers	about
their	Git	workflows,	and	take	the	time	to	actually	try	all	of	those	“I	wonder	what
would	have	happened	if…”	scenarios.	Good	luck!

For	questions,	comments,	or	suggestions,	please	contact	us.

Quick	Reference
git	cat-file	<type>	<object-id>

Display	the	specified	object,	where	<type>	is	one	of	commit,	tree,	blob,	or	tag.

git	cat-file	-t	<object-id>

Output	the	type	of	the	specified	object.

git	ls-tree	<tree-id>

Display	a	pretty	version	of	the	specified	tree	object.

git	gc

Perform	a	garbage	collection	on	the	object	database.

git	update-index	[--add]	<file>

Stage	the	specified	file,	using	the	optional	--add	flag	to	denote	a	new	untracked
file.

http://rypress.com/about

git	write-tree

Generate	a	tree	from	the	index	and	store	it	in	the	object	database.	Returns	the	ID
of	the	new	tree	object.

git	commit-tree	<tree-id>	-p	<parent-id>

Create	a	new	commit	object	from	the	given	tree	object	and	parent	commit.
Returns	the	ID	of	the	new	commit	object.

	Introduction
	A Brief History of Revision Control
	The Birth of Git
	Installation
	Get Ready!

	The Basics
	Create the Example Site
	Initialize the Git Repository
	View the Repository Status
	Stage a Snapshot
	Commit the Snapshot
	View the Repository History
	Configure Git
	Create New HTML Files
	Stage the New Files
	Commit the New Files
	Modify the HTML Pages
	Stage and Commit the Snapshot
	Explore the Repository
	Conclusion
	Quick Reference

	Undoing Changes
	Display Commit Checksums
	View an Old Revision
	View an Older Revision
	Return to Current Version
	Tag a Release
	Try a Crazy Experiment
	Stage and Commit the Snapshot
	View the Stable Commit
	Undo Committed Changes
	Start a Smaller Experiment
	Undo Uncommitted Changes
	Conclusion
	Quick Reference

	Branches I
	View Existing Branches
	Checkout the Crazy Experiment
	Create a New Branch
	Make a Rainbow
	Stage and Commit the Rainbow
	Rename the Rainbow
	Return to the Master Branch
	Create a CSS Branch
	Add a CSS Stylesheet
	Link the Stylesheet
	Return to the Master Branch (Again)
	Merge the CSS Branch
	Delete the CSS Branch
	Conclusion
	Quick Reference

	Branches II
	Continue the Crazy Experiment
	Merge the CSS Updates
	Style the Rainbow Page
	Link to the Rainbow Page
	Fork an Alternative Rainbow
	Change the Rainbow
	Emergency Update!
	Publish the News Hotfix
	Complete the Crazy Experiment
	Publish the Crazy Experiment
	Resolve the Merge Conflicts
	Cleanup the Feature Branches
	Conclusion
	Quick Reference

	Rebasing
	Create an About Section
	Add an About Page
	Another Emergency Update!
	Publish News Hotfix
	Rebase the About Branch
	Add a Personal Bio
	Add Dummy Page for Mary
	Link to the About Section
	Clean Up the Commit History
	Stop to Amend a Commit
	Continue the Interactive Rebase
	Publish the About Section
	Conclusion
	Quick Reference

	Rewriting History
	Create the Red Page
	Create the Yellow Page
	Link and Commit the New Pages
	Create and Commit the Green Page
	Begin an Interactive Rebase
	Undo the Generic Commit
	Split the Generic Commit
	Remove the Last Commit
	Open the Reflog
	Revive the Lost Commit
	Filter the Log History
	Merge in the Revived Branch
	Conclusion
	Quick Reference

	Remotes
	Clone the Repository (Mary)
	Configure The Repository (Mary)
	Start Mary’s Day (Mary)
	Create Mary’s Bio Page (Mary)
	Publish the Bio Page (Mary)
	View Remote Repositories (Mary)
	Return to Your Repository (You)
	Add Mary as a Remote (You)
	Fetch Mary’s Branches (You)
	Check Out a Remote Branch
	Find Mary’s Changes
	Merge Mary’s Changes
	Push a Dummy Branch
	Push a New Tag
	Conclusion
	Quick Reference

	Centralized Workflows
	Create a Bare Repository (Central)
	Update Remotes (Mary and You)
	Push the Master Branch (You)
	Add News Update (You)
	Publish the News Item (You)
	Update CSS Styles (Mary)
	Update Another CSS Style (Mary)
	Clean Up Before Publishing (Mary)
	Publish CSS Changes (Mary)
	Pull in Changes (Mary)
	Pull in Changes (You)
	Conclusion
	Quick Reference

	Distributed Workflows
	Create a Bitbucket Account
	Create a Public Repository (You)
	Push to the Public Repository (You)
	Browse the Public Repository (You)
	Clone the Repository (John)
	Add the Pink Page (John)
	Publish the Pink Page (John)
	View John’s Contributions (You)
	Integrate John’s Contributions (You)
	Publish John’s Contributions (You)
	Update Mary’s Repository (Mary)
	Update John’s Repository (John)
	Conclusion

	Patch Workflows
	Change the Pink Page (Mary)
	Create a Patch (Mary)
	Add a Pink Block (Mary)
	Create Patch of Entire Branch (Mary)
	Mail the Patches (Mary)
	Apply the Patches (You)
	Integrate the Patches (You)
	Update Mary’s Repository (Mary)
	Conclusion
	Quick Reference

	Tips & Tricks
	Archive The Repository
	Bundle the Repository
	Ignore a File
	Stash Uncommitted Changes
	Hook into Git’s Internals
	View Diffs Between Commits
	Reset and Checkout Files
	Aliases and Other Configurations
	Conclusion
	Quick Reference

	Plumbing
	Examine Commit Details
	Examine a Tree
	Examine a Blob
	Examine a Tag
	Inspect Git’s Branch Representation
	Explore the Object Database
	Collect the Garbage
	Add Files to the Index
	Store the Index in the Database
	Create a Commit Object
	Update HEAD
	Conclusion
	Quick Reference

