
Command Line
Workshop
Dylan Calvin

© UAB. All Rights Reserved.

• What is the Terminal / CLI / Shell?

• Elements of the Terminal

• Navigating files

• Creating / Moving / Copying / Removing / Renaming files

• Editing Files (vim and nano)

• Running Programs

• Stopping / Listing Running Programs

• Special Commands

• Unix Only Commands (Mac / Linux / WSL2)

Agenda 2

© UAB. All Rights Reserved.

• “How to list files in folder in terminal <Operating System>”

• “How to enter folder in terminal <Operating System”

• “How to use nano/vim”

• “How to view IP address in terminal <Operating System>”

• Etc.

Just google it 3

© UAB. All Rights Reserved.

• Two Periods – Filter your search by a number range (date, cost, etc.)
• Ex: New Construction UAB 2005..2010

• Quotation Marks – Filter your search to include an exact phrase
• Ex: Shakespeare “to be or not to be”

• Related Pages – Show results from pages like a website
• Ex: pizza related:pizzahut.com
• Note: This will also include subdomains of the base address (like blog.pizzahut.com)

• Wildcards – Acts as a placeholder for words you can’t figure out
• Ex: Amazon *

• Site – Limits search results to one website
• Ex: segmentation fault site:stackoverflow.com
• Argument must be a domain

Google Operators – Search Filtering 4

End of slide show, click to exit.

© UAB. All Rights Reserved.

• The Terminal / Command Line is what interfaces with the shell.

• All 3 Terms (Terminal, Command Line, Shell) mean the same thing, for the most
part.

• I might use these interchangeably, they all mean the same thing.

• If you’re taking notes, don’t worry if I’m going too fast for you to write it down.
• There will be a link at the end of the lecture part of the workshop where you can download a

copy of these slides for reference.

Before we get started (for real this time) 6

Why learn how to use the
Terminal?

© UAB. All Rights Reserved.

• GUI Applications take tons more resources to run in comparison to CLI.

• This table shows the RAM used for different Desktop Environments on Manjaro Linux.

Increased Efficiency 8

Desktop Environment RAM Used

Base – No Desktop Environment 128MB

LXQt 250MB

Mate 378MB

XFCE4 390MB

KDE Plasma 455MB

GNOME 447MB

Budgie 632MB

Cinnamon 665MB

https://linuxconfig.org/manjaro-linux-system-requirements

© UAB. All Rights Reserved.

• Fewer “Supervisors” keeping you from
doing dangerous stuff.

Improved Control 9

© UAB. All Rights Reserved.

Better Error Messages (usually) 10

Reasons to not use the
Terminal for everything

© UAB. All Rights Reserved.

Harder to accomplish simple tasks in Terminal

© UAB. All Rights Reserved.

• Can Very Easily break your
operating system if you have no
clue what you’re doing.

• Just play it safe and don’t mess
with any system files, you’ll be ok.

Fewer Supervisors is a
double-edged sword

13

What is the Terminal?

© UAB. All Rights Reserved.

• The GUI of an Operating System is an
Application that interfaces with the shell
• Or directly with system calls, if configured to.

The Terminal is sort of like the “Backend” Of the
Operating System.

15

© UAB. All Rights Reserved.

• In the beginning, there was no GUI or Terminal
• Computers were programmed with machine code being entered directly into memory

History of the Command Line / Terminal 16

Altair 8800,
1974

© UAB. All Rights Reserved.

• In the beginning, there was no GUI or
Terminal
• Computers were programmed with machine

code being entered directly into memory

• Altair 8800, KIM-1, PDP-8/11, etc.

History of the Command Line / Terminal 17

Commodore KIM-1,
1976

© UAB. All Rights Reserved.

• In the beginning, there was no GUI or Terminal
• Computers were programmed with machine code being entered directly into memory

History of the Command Line / Terminal 18

DEC PDP/8,
1965

© UAB. All Rights Reserved.

• In the beginning, there was no GUI or Terminal
• Computers were programmed with machine code being entered directly into memory

History of the Command Line / Terminal 19

DEC PDP/11,
1970

© UAB. All Rights Reserved.

• There were several different interpreters for those machines, but they all used
different methods and were not standardized.
• Interpreters used a predefined, hard coded set of commands that could not be changed

without redistributing a new version of the software.

• No internet yet, couldn’t just download an update.

• In 1964, Louis Pouzin coined the term Shell for the Multics Operating System.
• He had an idea of “using commands somehow like a programming language”

• In 1965, a Multics document describes the shell as
• “a common procedure called automatically by the supervisor whenever a user types in some

message at his console, at a time when he has no other process in active execution under
console control. This procedure acts as an interface between console messages and
subroutine [in the supervisor].”

History of the Command Line / Terminal 20

https://en.wikipedia.org/wiki/Shell_%28computing%29

© UAB. All Rights Reserved.

• In 1971, Ken Thompson developed the Thompson Shell for the first version of
UNIX.
• The UNIX Shell set the new standard for all interpreter-like interfaces.

• Machines that had not been obsoleted usually adopted UNIX as an operating system.

• In 1975, John Mashey augments the Thompson Shell to improve shell scripting
• It was called the Programmer’s Workbench (PWB) Shell, as it was distributed from 1975 –

1977 with PWB Unix

• Both of these are short lived, as they are quickly(ish) succeeded by…

History of the Command Line / Terminal 21

https://en.wikipedia.org/wiki/Shell_%28computing%29

https://en.wikipedia.org/wiki/Unix_shell

© UAB. All Rights Reserved.

• The Bourne Shell (sh)
• First Distributed with UNIX 7 in 1979
• Parts of the Shell Script was influenced by ALGOL 68 (ending nested structures with reversed

keywords, like if … fi)
• Still used today, sort of.

• The Bourne Again Shell (bash)
• Written as part of the GNU Project in 1989, it is an improvement on the Bourne Shell.
• Includes more features, and is the Default Interactive Shell for most Linux Systems

• The C Shell (csh)
• Written by Bill Joy, a graduate student at Berkeley, wrote the C shell in the C language in 1978.
• It was widely distributed with BSD Linux.

• The Z Shell (zsh)
• A more modern shell (1990) written in C that is backwards compatible with bash.

• Think like C Shell and Bash combined

• The Default shell in MacOS since Catalina

History of the Command Line / Terminal 22

https://en.wikipedia.org/wiki/Shell_%28computing%29

https://en.wikipedia.org/wiki/Unix_shell

Elements of the Terminal

2

3

© UAB. All Rights Reserved.

• Contains useful information you might want to know at any time
• Usually, most important info is the Current Working Directory

• Should be customizable, not going over that
• If you break it, it’s not my fault.

The Prompt 24

© UAB. All Rights Reserved.

The Prompt – Windows (Powershell or CMD) 25

User Input goes Here (Right side of >)Current Directory

© UAB. All Rights Reserved.

The Prompt – Unix 26

User Input goes Here (Right
side of $)

Current Directory
Device HostnameUsername

Note: If your Current Directory in the prompt is just ~, this means you’re in your home directory.

This is typically /home/username in Linux, and /Users/username in MacOS.

© UAB. All Rights Reserved.

• If you have a Line for a cursor, text will be inserted at the cursor.

• If you have a Block for a cursor, text will be inserted to the left of the cursor.

The Cursor 27

© UAB. All Rights Reserved.

• If you press the up arrow on your keyboard, you can reuse commands you have
already typed

• If you go up in your command history, you can press the down arrow to go back
down to a blank prompt (or whatever you typed before pressing the up arrow)

Terminal Command History 28

© UAB. All Rights Reserved.

• A recent-ish feature, pressing the Tab key will attempt to autofill the current
“phrase” in the Terminal.
• Works for commands and filenames only.

Autocomplete in Terminal 29

© UAB. All Rights Reserved.

• If you see something surrounded by <> or [] signs (like <name> or [name]), that is
something you need to replace before running the command

• For example, if the slide says ssh <blazerid>@moat.cis.uab.edu, you need to
replace the entire <blazerid> part with whatever goes there (In this case, your

blazerID).
• Ex: My ssh command would be ssh dylcal13@moat.cis.uab.edu

Before we get into commands… 30

© UAB. All Rights Reserved.

• Lastly, some commands will be UNIX (Linux/Mac) Only.

• I’ll do my best to include Windows equivalent commands if they don’t exist in
Powershell

• Also note that powershell != cmd, they behave differently
• Now, I’d probably recommend using Powershell, it can do all the things CMD does and more.

• Unless otherwise specified, all commands that are not UNIX specific should be able to run in
Powershell (not CMD).

Before we get into commands… 31

© UAB. All Rights Reserved.

• If you need a windows equivalent to a UNIX command…

• Google “<the command> for windows”.
• For example, chmod does not exist in Windows Powershell (or CMD).

• I would look up “chmod for windows”

When in Doubt, just Google it. 32

© UAB. All Rights Reserved.

• The Man Pages are like a bible for
UNIX commands.

• Extremely detailed documentation
about every command, including
option flags and behaviors.

• To find a man page, in the terminal
you can type man <command> to
pull it up in the terminal, or you can
google “man page <command>”

• Any site should work, but
personally I prefer linux.die.net
for the way they format the
pages.

When in Doubt, just Google
it. (Man Pages)

33

Navigating Folders / Files

© UAB. All Rights Reserved.

• Clears all text on the screen (Command History does not change)

• Usage: clear

• Example:

clear 35

© UAB. All Rights Reserved.

• Shows what files are in the current folder you are in

• Usage: ls

• Option Flags:

• -h: Human Readable

• -l: Long form Listing

• -a: List hidden files as well (files starting with a .)

• Flags can be chained together (Ex: ls –lah)

• This is not an exhaustive list, there are more flags.

• Example Output:

ls 36

© UAB. All Rights Reserved.

• Used to enter/exit folders

• Usage: cd <foldername or path>

• . Means “here”

• .. Means “back”

• Example:

cd 37

© UAB. All Rights Reserved.

• Prints the current working directory

• Usage: pwd

• Example:

pwd 38

Creating Files & Folders

© UAB. All Rights Reserved.

• Creates a new folder using the name provided

• Usage: mkdir <folder_name>

• Example:

mkdir 40

© UAB. All Rights Reserved.

• Creates a new file using the name provided

• Usage: touch <file_name>

• Example:

touch (UNIX Only) 41

Editing Files - Nano

© UAB. All Rights Reserved.

• A Text-Based Text Editor used in
the command line (developed in
1999)

• Not as powerful as vim, but easier
to use and still useful.

• Nano is UNIX only (unless you can
find a way to install nano on
windows)

What is nano?
43

© UAB. All Rights Reserved.

• Just type nano <file_name>

• If the file already exists, it will open it in nano.

• If the file does not exist, it will open nano and name the new file the file_name you gave it.

• You can also just type nano to open a new file with no name.

Opening Nano

© UAB. All Rights Reserved.

• Just start typing.

• All the functions at the bottom of the terminal are usable.
• Find the function you want to use (the ^ in nano means the Ctrl key).

• To activate it, type Ctrl and the letter of the function. For Example,

• Ctrl-O will save your file

• Ctrl-X will exit

• Ctrl-W will search the file for a phrase/word

• Follow the onscreen instructions to use the function.

Using Nano 45

Editing Files - VIM

© UAB. All Rights Reserved.

• A very powerful Text Editor
released in 1991 (For the Amiga)

• Configurable, you can create your
own keyboard shortcuts and such.

• Notorious for being impossible to
exit (Spoiler: it’s :q)

• Vim is also UNIX only (unless you
can find a way to install Vim in
Windows)

What is Vim?
47

© UAB. All Rights Reserved.

• Works the exact same as opening nano (but replace nano with vim).

Opening VIM 48

© UAB. All Rights Reserved.

• A little more complicated than Nano.

• VIM has modes, you cannot edit a file unless you are in “insert” mode.
• The Default Mode, “normal” is where you type editor commands (like :q)

• The options that were visible at the bottom in nano are not visible in Vim
• You will have to refer to the manual pages to learn how to do special tasks like cut, paste, etc.

• Saving is done with :w

• Quitting is done with :q

• Force quit with :q!

• You can chain these together to do both (:wq)

Using VIM 49

I went crazy trying to remember the movie name, it’s

“Arrival” ☺

Printing Files

© UAB. All Rights Reserved.

• Prints the content of a File to the terminal

• Usage: cat <filename/path>

• Example:

cat 51

Moving / Renaming Files
& Folders

© UAB. All Rights Reserved.

• This will move files and folders to the path provided
• It is also used for renaming files and folders.

• Usage: mv <input_file> <output_file>

• Example:

mv 53

Copying Files

© UAB. All Rights Reserved.

• Copies a file

• Usage: cp <input_file> <destination_file>

• Can also copy directories with –r

• Example:

cp 55

Removing Files & Folders

© UAB. All Rights Reserved.

• When using these commands to remove files & folders…

Disclaimer 57

There Is No Recycle Bin!

• Files will be deleted Permanently using these commands.
• Make extra sure that you are deleting the correct File or Folder.

© UAB. All Rights Reserved.

• Removes a folder using the provided path.
• Note: Folder Must Be empty, otherwise rmdir will error out.

• Usage: rmdir <foldername/path>

• Example:

rmdir 58

© UAB. All Rights Reserved.

• Removes a file using the provided path.

• Usage: rm <filename/path>

• Optionally, you can add –rf to remove folders with files inside.

• Usage: rm –rf <foldername/path>

• Example:

rm 59

Running Programs

© UAB. All Rights Reserved.

• Basically, ./ means to run a script that is the folder you’re currently in
• . = “here”, from the cd slide

• So, ./script means the script in the current folder.

• Why have the ./? Why not just the name of the script
• If we just say script, it will try finding script in the system path

• The path is a list of folders where applications should be found if called.

• For example, nano is in the system path. That’s why no matter where we are in the system, nano
will always reference the same application.

./ Syntax 61

© UAB. All Rights Reserved.

Path Examples 62

Example of a UNIX-like path

© UAB. All Rights Reserved.

Path Examples 63

Example of a Windows-like Path

© UAB. All Rights Reserved.

• Just type the name of the application and any arguments required.
• Example: nano file.txt

Running an installed application 64

Creating Background
Process

© UAB. All Rights Reserved.

• Suspends (stops) a foreground process and turns it into a job.

• Usage: Just type Ctrl-Z

• Example:

Ctrl-Z 66

© UAB. All Rights Reserved.

• Adding an ampersand (&) to the end of a command starts that command in the
background (as a job).

• Usage: <some_command> &

• Example:

& 67

Job ID Process ID (PID)

© UAB. All Rights Reserved.

• Shows all background jobs

• Usage: jobs

• Example:

jobs 68

© UAB. All Rights Reserved.

jobs man page 69

© UAB. All Rights Reserved.

• Brings a background process into the foreground

• Usage: fg <job_id>

• Example:

fg 70

© UAB. All Rights Reserved.

• Sends a separate running process into background (or restarts stopped job)

• Usage: bg <PID_or_Job_ID>

• Example:

bg 71

Task Manager in the
Terminal

© UAB. All Rights Reserved.

• Lists running processes under your username (your processes)

• Usage: ps

• Adding a –ef lists every running process.

• Example:

ps 73

© UAB. All Rights Reserved.

Sample ps -ef 74

© UAB. All Rights Reserved.

• Kills a process using the provided Process ID (PID)

• Usage: kill <pid>

kill 75

© UAB. All Rights Reserved.

kill (example) 76

© UAB. All Rights Reserved.

• Kills all processes that match the provided name

• Usage: killall <process_name>

killall (UNIX only) 77

© UAB. All Rights Reserved.

killall (Example) 78

© UAB. All Rights Reserved.

• Kills all running processes running under a username

• Usage: pkill –u <username>

Honorable Mention: pkill –u (UNIX only) 79

© UAB. All Rights Reserved.

pkill –u Example 80

Connecting to Remote
Servers

© UAB. All Rights Reserved.

• Connects your terminal to an ssh server.

• Usage: ssh <username>@<hostname>

• Example:

ssh 82

© UAB. All Rights Reserved.

• Used to download and upload files to a remote server over ssh.

• Usage:
• scp <local_path> <username>@<hostname>:<remote_path> (If uploading)

• scp <username>@<hostname>:<remote_path> <local_path> (If downloading)

scp 83

© UAB. All Rights Reserved.

• Uploading:

• Downloading:

scp Examples 84

© UAB. All Rights Reserved.

• scp kinda sucks, some people (like myself) prefer sftp.

• It’s like an interactive scp, I’m not going to cover it
• Google It.

Honorable Mention: sftp 85

Network Info

© UAB. All Rights Reserved.

• Displays all active network adapters and their details

• Usage: ifconfig

ifconfig (UNIX only) 87

© UAB. All Rights Reserved.

Ifconfig Example 88

https://www.howtoforge.com/linux-ifconfig-command/

© UAB. All Rights Reserved.

• Displays all active network adapters and their details

• Usage: ipconfig

ipconfig (Windows Only) 89

© UAB. All Rights Reserved.

Ipconfig Example 90

https://www.certblaster.com/network-plus-n10-007-examnotes-for-sub-objective-1-4-part-1-of-2/output-of-the-ipconfig-all-command/

© UAB. All Rights Reserved.

• Pings a server and displays relevant connection information

• Usage: ping <address>

• Example:

ping 91

I/O Redirection

© UAB. All Rights Reserved.

• Redirects the output of a command and overwrites the contents of a file with that
output.

• Usage: [some_command] > [some_file]

• Example:

> 93

© UAB. All Rights Reserved.

• Used to redirect file contents into commands.

• Usage: [some_command] < [some_file]

• Example:

< 94

© UAB. All Rights Reserved.

• Redirects the output of a command and appends to the contents of a file with that
output.

• Usage: [some_command] >> [some_file]

• Example:

>> 95

© UAB. All Rights Reserved.

• Used to redirect inputs to a command until a delimiter is hit.
• Being honest, rarely used. Wizards might know when you should use it.

• Usage: [some_command] << [some_file]

• Example:

<< 96

I/O Piping

© UAB. All Rights Reserved.

• Sends the output of one command as the input of the next command
• Allows us to chain commands together

• Usage: <some_command> | <some_other_command>

• Example:

| (This is not an “i”, it’s that character next to backslash (\)) 98

Miscellaneous Commands

© UAB. All Rights Reserved.

• Echos whatever is used as input.

• Usage: echo <input>

• Example:

echo 100

© UAB. All Rights Reserved.

• Displays the date and time.

• Usage: date

• Example:

date 101

© UAB. All Rights Reserved.

• Creates a new word to reference a command.
• Note: if you type alias with no arguments, prints all aliases and their values.

• Usage: alias <alias_name>=<command_to_alias>

• Example:

alias 102

UNIX Only Section

© UAB. All Rights Reserved.

• The following commands are the UNIX only ones I talked about before.

• If you need/want to have a windows equivalent, just google what an equivalent
command would be.

• UNIX commands can be used in WSL(2) on Windows.
• To install WSL2, Virtualization must be enabled in your BIOS and in Windows.

Like I said before, 104

© UAB. All Rights Reserved.

For Example… 105

© UAB. All Rights Reserved.

• Displays the amount of uptime and load averages.

• Usage: uptime

• Example:

uptime 106

© UAB. All Rights Reserved.

• Stands for “Get Regular Expression”, it will use a text pattern to filter results.
• Typically used in Pipes

• Usage: grep <pattern>

• Example:

grep 107

© UAB. All Rights Reserved.

• Creates a Symbolic Link to a file (think like a shortcut)

• Unless you know why, DO NOT FORGET THE –s!
• Forgetting the –s make it a hard link, which can and will break your filesystem.

• Usage: ln –s <file_to_link> <link_name>

• Example:

ln -s 108

© UAB. All Rights Reserved.

• Shows memory information

• Usage: free

• Example:

free 109

© UAB. All Rights Reserved.

• Shows disk usage statistics

• Usage: df –h [option_flags] <optional_device>

• Example:

df -h 110

© UAB. All Rights Reserved.

• Like free, but interactive and has live updating
• Closest thing to a task manager in the terminal

• Not installed on every machine by default

• Usage: htop

htop 111

© UAB. All Rights Reserved.

htop example 112

© UAB. All Rights Reserved.

• Like htop but worse, but should be installed on all systems

• Usage: top

top 113

© UAB. All Rights Reserved.

top example 114

© UAB. All Rights Reserved.

• Lists physical storage devices (not including partitions like df –h)

• Usage: lsblk

• Example:

lsblk 115

© UAB. All Rights Reserved.

• Lists physical usb devices

• Usage: lsusb

• Example:

lsusb 116

https://www.howtogeek.com/devops/how-to-use-lsusb-in-linux-with-a-practical-example/

© UAB. All Rights Reserved.

• Prints all system information

• Usage: uname –a

• Example:

uname -a 117

© UAB. All Rights Reserved.

uname flags 118

File Ownership (UNIX Only)

© UAB. All Rights Reserved.

• Permissions in UNIX systems are
split into 3 groups,
• Owner

• Group

• Everyone

• The number that represents
permissions for each group goes
from 0 to 7
• 0 = no permissions at all

• 7 = full read/write/execute
permissions

Ownership Masks (755 format) 120

https://www.geeksforgeeks.org/permissions-in-linux/

© UAB. All Rights Reserved.

• Just like 755 format, the drwx
format represents permissions for
the 3 groups.
• R = Read permissions

• W = Write Permissions

• X = Execute Permissions

• If there is a D at the beginning of
the 10 character string, it means
that file is a directory.
• I prefer drwxrwxrwx because of this.

Ownership Masks (drwx format) 121

https://www.geeksforgeeks.org/permissions-in-linux/

© UAB. All Rights Reserved.

• What permissions does the owner have from the mask 755?

• What about -rw-rw-rw?

• What permissions does everyone have from the mask 777?
• Why is this not a good idea?

• What would this mask look like in drwx format?

Pop Quiz 122

© UAB. All Rights Reserved.

• This gives everybody full
read/write/execute permissions on that
file.
• Even people on the internet can edit and access

this file this way!

• It can also break your operating system.

• It is general practice to use 755, so that
only the owner of the file can execute that
file.

(Almost) Never use 777! 123

© UAB. All Rights Reserved.

• Used to add/remove a permission to a file
• Generally requires admin privileges

• Usage: chmod <+/-><permission_letter> <file>

• Example:

chmod 124

© UAB. All Rights Reserved.

• Used to change the owner of a file
• There can only be one owner.

• Also generally requires admin privileges.

• Usage: chown <username> <file>

• Example:

chown 125

You Made It!

© UAB. All Rights Reserved.

• There are tons more commands you can learn that do more.

• The more you use the command line, the more you will learn and make it easier to
use.

• The best teacher will be practice.

• There are lots of free resources to learn from, such as…

I’ve only scratched the surface. 127

© UAB. All Rights Reserved.

• TLCL: A free textbook about the Linux Command Line
• https://sourceforge.net/projects/linuxcommand/files/TLCL/19.01/TLCL-19.01.pdf/download

• A mostly complete list of all windows command prompt commands
• https://www.lifewire.com/list-of-command-prompt-commands-4092302

• A-Z Linux Commands
• https://linuxhandbook.com/a-to-z-linux-commands/

• Linux Command Cheat Sheet
• https://phoenixnap.com/kb/linux-commands-cheat-sheet

• These Slides will be available to download to use for reference!
• https://acmatuab.org/workshops/

Resources to learn from 128

https://sourceforge.net/projects/linuxcommand/files/TLCL/19.01/TLCL-19.01.pdf/download
https://www.lifewire.com/list-of-command-prompt-commands-4092302
https://linuxhandbook.com/a-to-z-linux-commands/
https://phoenixnap.com/kb/linux-commands-cheat-sheet
https://acmatuab.org/workshops/

Questions?

	Slide 1: Command Line Workshop
	Slide 2: Agenda
	Slide 3: Just google it
	Slide 4: Google Operators – Search Filtering
	Slide 5
	Slide 6: Before we get started (for real this time)
	Slide 7: Why learn how to use the Terminal?
	Slide 8: Increased Efficiency
	Slide 9: Improved Control
	Slide 10: Better Error Messages (usually)
	Slide 11: Reasons to not use the Terminal for everything
	Slide 12: Harder to accomplish simple tasks in Terminal
	Slide 13: Fewer Supervisors is a double-edged sword
	Slide 14: What is the Terminal?
	Slide 15: The Terminal is sort of like the “Backend” Of the Operating System.
	Slide 16: History of the Command Line / Terminal
	Slide 17: History of the Command Line / Terminal
	Slide 18: History of the Command Line / Terminal
	Slide 19: History of the Command Line / Terminal
	Slide 20: History of the Command Line / Terminal
	Slide 21: History of the Command Line / Terminal
	Slide 22: History of the Command Line / Terminal
	Slide 23: Elements of the Terminal
	Slide 24: The Prompt
	Slide 25: The Prompt – Windows (Powershell or CMD)
	Slide 26: The Prompt – Unix
	Slide 27: The Cursor
	Slide 28: Terminal Command History
	Slide 29: Autocomplete in Terminal
	Slide 30: Before we get into commands…
	Slide 31: Before we get into commands…
	Slide 32: When in Doubt, just Google it.
	Slide 33: When in Doubt, just Google it. (Man Pages)
	Slide 34: Navigating Folders / Files
	Slide 35: clear
	Slide 36: ls
	Slide 37: cd
	Slide 38: pwd
	Slide 39: Creating Files & Folders
	Slide 40: mkdir
	Slide 41: touch (UNIX Only)
	Slide 42: Editing Files - Nano
	Slide 43: What is nano?
	Slide 44: Opening Nano
	Slide 45: Using Nano
	Slide 46: Editing Files - VIM
	Slide 47: What is Vim?
	Slide 48: Opening VIM
	Slide 49: Using VIM
	Slide 50: Printing Files
	Slide 51: cat
	Slide 52: Moving / Renaming Files & Folders
	Slide 53: mv
	Slide 54: Copying Files
	Slide 55: cp
	Slide 56: Removing Files & Folders
	Slide 57: Disclaimer
	Slide 58: rmdir
	Slide 59: rm
	Slide 60: Running Programs
	Slide 61: ./ Syntax
	Slide 62: Path Examples
	Slide 63: Path Examples
	Slide 64: Running an installed application
	Slide 65: Creating Background Process
	Slide 66: Ctrl-Z
	Slide 67: &
	Slide 68: jobs
	Slide 69: jobs man page
	Slide 70: fg
	Slide 71: bg
	Slide 72: Task Manager in the Terminal
	Slide 73: ps
	Slide 74: Sample ps -ef
	Slide 75: kill
	Slide 76: kill (example)
	Slide 77: killall (UNIX only)
	Slide 78: killall (Example)
	Slide 79: Honorable Mention: pkill –u (UNIX only)
	Slide 80: pkill –u Example
	Slide 81: Connecting to Remote Servers
	Slide 82: ssh
	Slide 83: scp
	Slide 84: scp Examples
	Slide 85: Honorable Mention: sftp
	Slide 86: Network Info
	Slide 87: ifconfig (UNIX only)
	Slide 88: Ifconfig Example
	Slide 89: ipconfig (Windows Only)
	Slide 90: Ipconfig Example
	Slide 91: ping
	Slide 92: I/O Redirection
	Slide 93: >
	Slide 94: <
	Slide 95: >>
	Slide 96: <<
	Slide 97: I/O Piping
	Slide 98: | (This is not an “i”, it’s that character next to backslash (\))
	Slide 99: Miscellaneous Commands
	Slide 100: echo
	Slide 101: date
	Slide 102: alias
	Slide 103: UNIX Only Section
	Slide 104: Like I said before,
	Slide 105: For Example…
	Slide 106: uptime
	Slide 107: grep
	Slide 108: ln -s
	Slide 109: free
	Slide 110: df -h
	Slide 111: htop
	Slide 112: htop example
	Slide 113: top
	Slide 114: top example
	Slide 115: lsblk
	Slide 116: lsusb
	Slide 117: uname -a
	Slide 118: uname flags
	Slide 119: File Ownership (UNIX Only)
	Slide 120: Ownership Masks (755 format)
	Slide 121: Ownership Masks (drwx format)
	Slide 122: Pop Quiz
	Slide 123: (Almost) Never use 777!
	Slide 124: chmod
	Slide 125: chown
	Slide 126: You Made It!
	Slide 127: I’ve only scratched the surface.
	Slide 128: Resources to learn from
	Slide 129: Questions?

